Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,105 Bytes
f8a748e 7f48662 1876385 f8a748e 7f48662 f8a748e 200a130 c38e273 200a130 f8a748e ef2764c 200a130 44bc074 7f48662 f8a748e 7f48662 f8a748e 7f48662 200a130 7f48662 200a130 7f48662 200a130 44bc074 7f48662 200a130 c38e273 4004f94 c38e273 4004f94 c38e273 4004f94 c38e273 200a130 4004f94 200a130 4004f94 eb7f8ad 4004f94 200a130 4004f94 d89eff2 4004f94 200a130 4004f94 eb7f8ad 44bc074 200a130 4004f94 687aaef 200a130 44bc074 200a130 4004f94 c0df1a8 d89eff2 4004f94 7f48662 c38e273 4004f94 7f48662 200a130 c0df1a8 200a130 7f48662 200a130 7f48662 200a130 eb7f8ad 200a130 44bc074 7f48662 200a130 7f48662 200a130 44bc074 200a130 44bc074 200a130 f8a748e 7f48662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import gradio as gr
from PIL import Image
import os
import spaces
from OmniGen import OmniGenPipeline
pipe = OmniGenPipeline.from_pretrained(
"Shitao/OmniGen-v1"
)
@spaces.GPU(duration=180)
# 示例处理函数:生成图像
def generate_image(text, img1, img2, img3, height, width, guidance_scale, inference_steps, seed):
input_images = [img1, img2, img3]
# 去除 None
input_images = [img for img in input_images if img is not None]
if len(input_images) == 0:
input_images = None
output = pipe(
prompt=text,
input_images=input_images,
height=height,
width=width,
guidance_scale=guidance_scale,
img_guidance_scale=1.6,
num_inference_steps=inference_steps,
separate_cfg_infer=True,
use_kv_cache=False,
seed=seed,
)
img = output[0]
return img
# def generate_image(text, img1, img2, img3, height, width, guidance_scale, inference_steps):
# input_images = []
# if img1:
# input_images.append(Image.open(img1))
# if img2:
# input_images.append(Image.open(img2))
# if img3:
# input_images.append(Image.open(img3))
# return input_images[0] if input_images else None
def get_example():
case = [
[
"A vintage camera placed on the ground, ejecting a swirling cloud of Polaroid-style photographs into the air. The photos, showing landscapes, wildlife, and travel scenes, seem to defy gravity, floating upward in a vortex of motion. The camera emits a glowing, smoky light from within, enhancing the magical, surreal atmosphere. The dark background contrasts with the illuminated photos and camera, creating a dreamlike, nostalgic scene filled with vibrant colors and dynamic movement. Scattered photos are visible on the ground, further contributing to the idea of an explosion of captured memories.",
None,
None,
None,
1024,
1024,
2.5,
50,
0,
],
[
"A woman <img><|image_1|></img> in a wedding dress. Next to her is a black-haired man.",
"./imgs/test_cases/yifei2.png",
None,
None,
1024,
1024,
2.5,
50,
0,
],
[
"A man in a black shirt is reading a book. The man is the right man in <img><|image_1|></img>.",
"./imgs/test_cases/two_man.jpg",
None,
None,
1024,
1024,
2.5,
50,
0,
],
[
"Two men are celebrating with raised glasses in a restaurant. A man is <img><|image_1|></img>. The other man is <img><|image_2|></img>.",
"./imgs/test_cases/young_musk.jpg",
"./imgs/test_cases/young_trump.jpeg",
None,
1024,
1024,
2.5,
50,
0,
],
[
"<img><|image_1|><img>\n Remove the woman's earrings. Replace the mug with a clear glass filled with sparkling iced cola.",
"./imgs/demo_cases/t2i_woman_with_book.png",
None,
None,
1024,
1024,
2.5,
50,
222,
],
[
"Detect the skeleton of human in this image: <img><|image_1|></img>.",
"./imgs/test_cases/control.jpg",
None,
None,
1024,
1024,
2.0,
50,
0,
],
[
"Generate a new photo using the following picture and text as conditions: <img><|image_1|><img>\n A young boy is sitting on a sofa in the library, holding a book. His hair is neatly combed, and a faint smile plays on his lips, with a few freckles scattered across his cheeks. The library is quiet, with rows of shelves filled with books stretching out behind him.",
"./imgs/demo_cases/skeletal.png",
None,
None,
1024,
1024,
2,
50,
42,
],
[
"Following the pose of this image <img><|image_1|><img>, generate a new photo: A young boy is sitting on a sofa in the library, holding a book. His hair is neatly combed, and a faint smile plays on his lips, with a few freckles scattered across his cheeks. The library is quiet, with rows of shelves filled with books stretching out behind him.",
"./imgs/demo_cases/edit.png",
None,
None,
1024,
1024,
2.0,
50,
123,
],
[
"<img><|image_1|><\/img> What item can be used to see the current time? Please remove it.",
"./imgs/test_cases/watch.jpg",
None,
None,
1024,
1024,
2.5,
50,
0,
],
[
"Three guitars are displayed side by side on a rustic wooden stage, each showcasing its unique character and style. The left guitar is <img><|image_1|><\/img>. The middle guitar is <img><|image_2|><\/img>. The right guitars is <img><|image_3|><\/img>.",
"./imgs/test_cases/guitar1.png",
"./imgs/test_cases/guitar1.png",
"./imgs/test_cases/guitar1.png",
1024,
1024,
2.5,
50,
0,
],
]
return case
def run_for_examples(text, img1, img2, img3, height, width, guidance_scale, inference_steps, seed):
return generate_image(text, img1, img2, img3, height, width, guidance_scale, inference_steps, seed)
description = """
OmniGen is a unified image generation model that you can use to perform various tasks, including but not limited to text-to-image generation, subject-driven generation, Identity-Preserving Generation, and image-conditioned generation.
For multi-modal to image generation, you should pass a string as `prompt`, and a list of image paths as `input_images`. The placeholder in the prompt should be in the format of `<img><|image_*|></img>` (for the first image, the placeholder is <img><|image_1|></img>. for the second image, the the placeholder is <img><|image_2|></img>).
For example, use an image of a woman to generate a new image:
prompt = "A woman holds a bouquet of flowers and faces the camera. Thw woman is \<img\>\<|image_1|\>\</img\>."
"""
# Gradio 接口
with gr.Blocks() as demo:
gr.Markdown("# OmniGen: Unified Image Generation [paper](https://arxiv.org/abs/2409.11340) [code](https://github.com/VectorSpaceLab/OmniGen)")
gr.Markdown(description)
with gr.Row():
with gr.Column():
# 文本输入框
prompt_input = gr.Textbox(
label="Enter your prompt, use <img><|image_i|></img> to represent i-th input image", placeholder="Type your prompt here..."
)
with gr.Row(equal_height=True):
# 图片上传框
image_input_1 = gr.Image(label="<img><|image_1|></img>", type="filepath")
image_input_2 = gr.Image(label="<img><|image_2|></img>", type="filepath")
image_input_3 = gr.Image(label="<img><|image_3|></img>", type="filepath")
# 高度和宽度滑块
height_input = gr.Slider(
label="Height", minimum=256, maximum=2048, value=1024, step=16
)
width_input = gr.Slider(
label="Width", minimum=256, maximum=2048, value=1024, step=16
)
# 引导尺度输入
guidance_scale_input = gr.Slider(
label="Guidance Scale", minimum=1.0, maximum=10.0, value=3.0, step=0.1
)
num_inference_steps = gr.Slider(
label="Inference Steps", minimum=1, maximum=100, value=50, step=1
)
seed_input = gr.Slider(
label="Seed", minimum=0, maximum=2147483647, value=42, step=1
)
# 生成按钮
generate_button = gr.Button("Generate Image")
with gr.Column():
# 输出图像框
output_image = gr.Image(label="Output Image")
# 按钮点击事件
generate_button.click(
generate_image,
inputs=[
prompt_input,
image_input_1,
image_input_2,
image_input_3,
height_input,
width_input,
guidance_scale_input,
num_inference_steps,
seed_input,
],
outputs=output_image,
)
gr.Examples(
examples=get_example(),
fn=run_for_examples,
inputs=[
prompt_input,
image_input_1,
image_input_2,
image_input_3,
height_input,
width_input,
guidance_scale_input,
num_inference_steps,
seed_input,
],
outputs=output_image,
)
# 启动应用
demo.launch() |