Shivam29rathore's picture
Update app.py
c818447
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import pickle
import torch
from transformers import PegasusTokenizer, PegasusForConditionalGeneration
import tensorflow as tf
from tensorflow.python.lib.io import file_io
from nltk.tokenize import sent_tokenize
import io
#contents = pickle.load(f) becomes...
#contents = CPU_Unpickler(f).load()
model_path = "finbert.sav"
#load model from drive
with open(model_path, "rb") as f:
model1= pickle.load(f)
tf.compat.v1.disable_eager_execution()
# Let's load the model and the tokenizer
model_name = "human-centered-summarization/financial-summarization-pegasus"
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model2 = PegasusForConditionalGeneration.from_pretrained(model_name)
#tokenizer = AutoTokenizer.from_pretrained(checkpoint)
#model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
import nltk
from finbert_embedding.embedding import FinbertEmbedding
import pandas as pd
from nltk.cluster import KMeansClusterer
import numpy as np
import os
from scipy.spatial import distance_matrix
from tensorflow.python.lib.io import file_io
import pickle
nltk.download('punkt')
def finbert(word):
# Instantiate path to store each text Datafile in dataframe
data_path = "/tmp/"
if not os.path.exists(data_path):
os.makedirs(data_path)
input_ = "/tmp/input.txt"
# Write file to disk so we can convert each datapoint to a txt file
with open(input_, "w") as file:
file.write(word)
# read the written txt into a variable to start clustering
with open(input_ , 'r') as f:
text = f.read()
# Create tokens from the txt file
tokens = nltk.sent_tokenize(text)
# Strip out trailing and leading white spaces from tokens
sentences = [word.strip() for word in tokens]
#Create a DataFrame from the tokens
data = pd.DataFrame(sentences)
# Assign name Sentences to the column containing text tokens
data.columns = ['Sentences']
# Function to create numerical embeddings for each text tokens in dataframe
def get_sentence_embeddings():
# Create empty list for sentence embeddings
sentence_list = []
# Loop through all sentences and append sentence embeddings to list
for i in tokens:
sentence_embedding = model1.sentence_vector(i)
sentence_list.append(sentence_embedding)
# Create empty list for ndarray
sentence_array=[]
# Loop through sentence list and change data type from tensor to array
for i in sentence_list:
sentence_array.append(i.numpy())
# return sentence embeddings as list
return sentence_array
# Apply get_sentence_embeddings to dataframe to create column Embeddings
data['Embeddings'] = get_sentence_embeddings()
#Number of expected sentences
NUM_CLUSTERS = 10
iterations = 8
# Convert Embeddings into an array and store in variable X
X = np.array(data['Embeddings'].to_list())
#Build k-means cluster algorithm
Kclusterer = KMeansClusterer(
NUM_CLUSTERS,
distance = nltk.cluster.util.cosine_distance,
repeats = iterations, avoid_empty_clusters = True)
# if length of text is too short, K means would return an error
# use the try except block to return the text as result if it is too short.
try:
assigned_clusters = Kclusterer.cluster(X,assign_clusters=True)
# Apply Kmean Cluster to DataFrame and create new columns Clusters and Centroid
data['Cluster'] = pd.Series(assigned_clusters, index = data.index)
data['Centroid'] = data['Cluster'].apply(lambda x: Kclusterer.means()[x])
# return the text if clustering algorithm catches an exceptiona and move to the next text file
except ValueError:
return text
# function that computes the distance of each embeddings from the centroid of the cluster
def distance_from_centroid(row):
return distance_matrix([row['Embeddings']], [row['Centroid'].tolist()])[0][0]
# apply distance_from_centroid function to data
data['Distance_From_Centroid'] = data.apply(distance_from_centroid, axis =1)
## Return Final Summary
summary = " ".join(data.sort_values(
'Distance_From_Centroid',
ascending = True).groupby('Cluster').head(1).sort_index()['Sentences'].tolist())
import re
words = list()
for text in summary.split():
text = re.sub(r'\n','',text)
text = re.sub(r'\s$','',text)
words.append(text)
summary = " ".join(words)
return (summary," Length of Input:---->"+str(len(word))," Length of Output:----> "+str(len(summary)))
def pegasus(text):
'''A function to obtain summaries for each tokenized sentence.
It returns a summarized document as output'''
import nltk
nltk.download('punkt')
import os
data_path = "/tmp/"
if not os.path.exists(data_path):
os.makedirs(data_path)
input_ = "/tmp/input.txt"
with open(input_, "w") as file:
file.write(text)
# read the written txt into a variable
with open(input_ , 'r') as f:
text_ = f.read()
def tokenized_sentences(file):
'''A function to generate chunks of sentences and texts.
Returns tokenized texts'''
# Create empty arrays
tokenized_sentences = []
sentences = []
length = 0
for sentence in sent_tokenize(file):
length += len(sentence)
# 512 is the maximum input length for the Pegasus model
if length < 512:
sentences.append(sentence)
else:
tokenized_sentences.append(sentences)
sentences = [sentence]
length = len(sentence)
sentences = [sentence.strip() for sentence in sentences]
# Append all tokenized sentences
if sentences:
tokenized_sentences.append(sentences)
return tokenized_sentences
tokenized = tokenized_sentences(text_)
# Use GPU if available
device = 'cuda' if torch.cuda.is_available() else 'cpu'
global summary
# Create an empty array for all summaries
summary = []
# Loop to encode tokens, to generate abstractive summary and finally decode tokens
for token in tokenized:
# Encoding
inputs = tokenizer.encode(' '.join(token), truncation=True, return_tensors='pt')
# Use CPU or GPU
inputs = inputs.to(device)
# Get summaries from transformer model
all_summary = model2.to(device).generate(inputs,do_sample=True,
max_length=50, top_k=50, top_p=0.95,
num_beams = 5, early_stopping=True)
# num_return_sequences=5)
# length_penalty=0.2, no_repeat_ngram_size=2
# min_length=10,
# max_length=50)
# Decoding
output = [tokenizer.decode(each_summary, skip_special_tokens=True, clean_up_tokenization_spaces=False) for each_summary in all_summary]
# Append each output to array
summary.append(output)
# Get final summary
summary = [sentence for each in summary for sentence in each]
final = "".join(summary)
return final
import gradio as gr
interface1 = gr.Interface(fn=finbert,
inputs =gr.inputs.Textbox(lines=15,placeholder="Enter your text !!",label='Input-10k Sections'),
outputs=gr.outputs.Textbox(label='Output')).launch()