File size: 25,530 Bytes
cec3c97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc57f7a
cec3c97
 
fc57f7a
cec3c97
 
 
 
 
 
fc57f7a
cec3c97
fc57f7a
 
 
 
 
 
 
 
cec3c97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d8e162
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
import os
import re
import json
import openai
import psycopg2
import google.generativeai as genai
import gradio as gr
from langchain_community.document_loaders.csv_loader import CSVLoader
from langchain.vectorstores import FAISS
from langchain.embeddings.base import Embeddings
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
from langchain_core.prompts import ChatPromptTemplate
from langchain.output_parsers.json import SimpleJsonOutputParser
from langchain.memory import ConversationBufferMemory
from langchain.chains import LLMChain
from langchain_core.prompts import (
    ChatPromptTemplate,
    MessagesPlaceholder,
    SystemMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain import OpenAI




os.environ['GOOGLE_API_KEY'] = 'AIzaSyDLwJAr5iXL2Weaw1XphFNSeijytqOSbDg'
os.environ['OPENAI_API_KEY'] = 'sk-proj-Kh4UIWkfDxSGppQpooxXT3BlbkFJATohXqhpkJE6MqliIkmU'
# Set your API keys

OPENAI_API_KEY = 'sk-proj-Kh4UIWkfDxSGppQpooxXT3BlbkFJATohXqhpkJE6MqliIkmU'
GOOGLE_API_KEY = 'AIzaSyDLwJAr5iXL2Weaw1XphFNSeijytqOSbDg'
openai.api_key = OPENAI_API_KEY
genai.configure(api_key=GOOGLE_API_KEY)




class OpenAIEmbeddings(Embeddings):
    def embed_documents(self, texts):
        response = openai.Embedding.create(
            model="text-embedding-ada-002",
            api_key=OPENAI_API_KEY,
            input=texts
        )
        embeddings = [e["embedding"] for e in response["data"]]
        return embeddings




    def embed_query(self, text):
        response = openai.Embedding.create(
            model="text-embedding-ada-002",
            api_key=OPENAI_API_KEY,
            input=[text]
        )
        embedding = response["data"][0]["embedding"]
        return embedding




class GeminiEmbeddings(GoogleGenerativeAIEmbeddings):
    def __init__(self, api_key):
        super().__init__(model="models/text-embedding-004", google_api_key=GOOGLE_API_KEY)




def extract_entities_openai(query):
    prompt = f"""
Find the entities from the query given below enclosed in triple quotes. Make sure to ONLY return response in JSON format, with the key as "KPI" and extracted entities as list. Example Output JSON:
{{
  "KPI": ["Extracted Entity 1", "Extracted Entity 2", ....]
}}


Query begins here:
\"\"\"{query}\"\"\"
"""
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[
            {"role": "user", "content": prompt}
        ],
        temperature=0
    )
    return response['choices'][0]['message']['content'].strip()



def extract_entities_gemini(query):
    try:
        llm_content_summary = ChatGoogleGenerativeAI(
            model="gemini-1.5-pro",
            temperature=0,
            max_tokens=250,
            timeout=None,
            max_retries=2,
            google_api_key=GOOGLE_API_KEY,
        )




        prompt = ChatPromptTemplate.from_messages(
            [
                (
                    "system", """Use the instructions below to generate responses based on user inputs. Return the answer as a JSON object.""",
                ),
                ("user", f"""Find the entities from the query given below enclosed in triple quotes. Make sure to ONLY return response in JSON format, with the key as "KPI" and extracted entities as list. Example Output JSON:
"KPI": ["Extracted Entity 1", "Extracted Entity 2", ....]
Query begins here:
\"\"\"{query}\"\"\"
"""),
            ]
        )




        json_parser = SimpleJsonOutputParser()
        chain = prompt | llm_content_summary | json_parser
        response = chain.invoke({"input": query})
       
        if isinstance(response, dict):
            response = json.dumps(response)
       
        return response
    except Exception as e:
        print(f"Error generating content summary: {e}")
        return None




def fetch_table_schema():
    try:
        conn = psycopg2.connect(
            dbname='postgres',
            user='shivanshu',
            password='root',
            host='34.170.181.105',
            port='5432'
        )
        cursor = conn.cursor()
        table_name = 'network'
        query = f"""
        SELECT
            column_name,
            data_type,
            character_maximum_length,
            is_nullable
        FROM
            information_schema.columns
        WHERE
            table_name = '{table_name}';
        """
        cursor.execute(query)
        rows = cursor.fetchall()
        cursor.close()
        schema_dict = {
            row[0]: {
                'data_type': row[1],
                'character_maximum_length': row[2],
                'is_nullable': row[3]
            }
            for row in rows
        }
        return schema_dict
    except Exception as e:
        print(f"Error fetching table schema: {e}")
        return {}




column_names=[]

def extract_column_names(sql_query):
    # Use a regular expression to extract the part of the query between SELECT and FROM
    pattern = r'SELECT\s+(.*?)\s+FROM'
    match = re.search(pattern, sql_query, re.IGNORECASE | re.DOTALL)
    if not match:
        return []


    columns_part = match.group(1).strip()

    # Split columns based on commas that are not within parentheses
    column_names = re.split(r',\s*(?![^()]*\))', columns_part)

    # Process each column to handle aliases and functions
    clean_column_names = []
    for col in column_names:
        # Remove any function wrappers (e.g., TRIM, COUNT, etc.)
        col = re.sub(r'\b\w+\((.*?)\)', r'\1', col)

        # Remove any aliases (i.e., words following 'AS')
        col = re.split(r'\s+AS\s+', col, flags=re.IGNORECASE)[-1]

        # Strip any remaining whitespace or backticks/quotes
        col = col.strip(' `"[]')
        clean_column_names.append(col)
    return clean_column_names


def process_sublist(sublist,similarity_threshold):
            processed_list = sublist[0:3]
            for index in range(3, len(sublist)):
                if sublist[index]['similarity'] >= similarity_threshold:
                    processed_list.append(sublist[index])
                else:
                    break
            return processed_list


from langchain_community.chat_models import ChatOpenAI
# Initialize the OpenAI model and memory
openai_model = ChatOpenAI(model='gpt-4', temperature=0, api_key=OPENAI_API_KEY)
openai_memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)

def generate_sql_query_openai(description, table_schema, vector_store, og_table_schema):
    global openai_model
    global openai_memory
    global column_names
    try:
        user_input = description
        print(user_input)
        entities = extract_entities_openai(user_input)
        entities_obj = json.loads(entities)
        kpis = entities_obj['KPI']

        # Fetch similar documents
        final_results = []
        similar_kpis = []
        for kpi in kpis:
            docs = vector_store.similarity_search_with_score(kpi, k=6)
            results = []
            count = 1
            for doc, distance in docs:
                name_desc = doc.page_content.split("\nDescription: ")
                name = name_desc[0].replace("Name: ", "")
                description = name_desc[1] if len(name_desc) > 1 else "No description available."
                similarity_score = round((1 - distance) * 100, 2)  # Convert distance to similarity score in percent
                results.append({"name": name, "description": description, "similarity": similarity_score, "Index": count})
                similar_kpis.append({"name": name, "similarity": similarity_score})
                count += 1  # Increment the count for each result
            final_results.append(results)

        # Process results
        similarity_threshold = 75.0

        processed_sublists = [process_sublist(sublist,similarity_threshold) for sublist in final_results]
        flattened_results = [item for sublist in processed_sublists for item in sublist]
       
        user_input_entities = [item['name'] for item in flattened_results]
        print("BYE1",user_input_entities)
        
        try:
            # Strip whitespace and ensure case matches for comparison
            user_input_entities = [key.strip() for key in user_input_entities]
            og_table_schema_keys = [key.strip() for key in og_table_schema.keys()]

            # Check and create user_input_table_schema
            table_schema = {key: og_table_schema[key] for key in user_input_entities if key in og_table_schema_keys}
            print("BYE3",table_schema)
        except Exception as e:
            print(f"An error occurred: {e}")


        table_schema = json.dumps(table_schema)
        table_schema = table_schema.replace('{', '[')
        table_schema = table_schema.replace('}', ']')
        print("GG123")
        system_message_template1 = f"""Generate the PostgreSQL query for the following task: {description}.
        The connection with the database is already setup and the table is called network.
        Enclose column names in double quotes ("), but do not use escape characters (e.g., "\").
        Do not assign aliases to the columns.
        Do not calculate new columns, unless specifically called to.
        Return only the PostgreSQL query, nothing else.
        The list of all the columns is as follows: {table_schema}
        Make sure the response should strictly follow JSON format. The key should be "Query" and the value should be the Postgresql query.
        Example Output JSON:
        ["Query": PostgreSQL Executable query]"""
               
        system_message_template = system_message_template1
        print(system_message_template)
        # Create the ChatPromptTemplate
        print("GG1234")
        prompt = ChatPromptTemplate(
            messages=[
                SystemMessagePromptTemplate.from_template(system_message_template),
                # Placeholder for chat history
                MessagesPlaceholder(variable_name="chat_history"),
                # User's question will be dynamically inserted
                HumanMessagePromptTemplate.from_template("""
                    {question}
                """)
            ]
        )



        print("GG12345")
        conversation = LLMChain(
            llm=openai_model,
            prompt=prompt,
            verbose=True,
            memory=openai_memory
        )




        print(prompt)
        response = conversation.invoke({'question': user_input})
        response = response['text']
        response = response.replace('\\', '')
        print(response)
        print("************************************************")
        print(type(response))
       
        # Regular expression pattern to extract the query string
        pattern = r'{"Query":\s*"(.*?)"\s*}'
        # Extract the content

        sql_query = None
        match = re.search(pattern, response)
        if match:
            sql_query = match.group(1)
            print(sql_query)
        
        print("jiji1")
        if sql_query:
            # Fetch data from database
            results = fetch_data_from_db(sql_query)
            print(results)
            column_names1 = extract_column_names(sql_query)
            column_names=column_names1
            print("jiji",column_names)

        else:
            column_names=[]
            results=[]

        pattern = r'```.*?```(.*)'
        match = re.search(pattern, response, re.DOTALL)
        print("GG",match)
        if match:
            response = match.group(1).strip()
            print("GG1",response)

        print(type(user_input_entities))
        print(type(response))
        print(type(sql_query))
        print(type(results))
        print("Process completed.")
        return user_input_entities, response, sql_query, results
   
    except Exception as e:
        print(f"Error generating SQL query: {e}")



gemini_model = ChatGoogleGenerativeAI(model='gemini-1.5-pro-001',temperature=0,google_api_key = GOOGLE_API_KEY)
gemini_memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)

def generate_sql_query_gemini(description, table_schema,vector_store,og_table_schema):
    global gemini_model
    global gemini_memory
    global column_names
    try:
        user_input = description
        print(user_input)
        entities = extract_entities_gemini(user_input)
        entities_obj = json.loads(entities)
        kpis = entities_obj['KPI']

# Fetch similar documents
        final_results = []
        similar_kpis = []
        for kpi in kpis:
            docs = vector_store.similarity_search_with_score(kpi, k=6)
            results = []
            count = 1
            for doc, distance in docs:
                name_desc = doc.page_content.split("\nDescription: ")
                name = name_desc[0].replace("Name: ", "")
                description = name_desc[1] if len(name_desc) > 1 else "No description available."
                similarity_score = round((1 - distance) * 100, 2)  # Convert distance to similarity score in percent
                results.append({"name": name, "description": description, "similarity": similarity_score, "Index": count})
                similar_kpis.append({"name": name, "similarity": similarity_score})
                count += 1  # Increment the count for each result
            final_results.append(results)

        # Process results
        similarity_threshold = 75.0

        processed_sublists = [process_sublist(sublist,similarity_threshold) for sublist in final_results]
        flattened_results = [item for sublist in processed_sublists for item in sublist]
       
        user_input_entities = [item['name'] for item in flattened_results]
        print("BYE1",user_input_entities)
        
        try:
            # Strip whitespace and ensure case matches for comparison
            user_input_entities = [key.strip() for key in user_input_entities]
            og_table_schema_keys = [key.strip() for key in og_table_schema.keys()]

            # Check and create user_input_table_schema
            table_schema = {key: og_table_schema[key] for key in user_input_entities if key in og_table_schema_keys}
            print("BYE3",table_schema)
        except Exception as e:
            print(f"An error occurred: {e}")


        table_schema = json.dumps(table_schema)
        table_schema = table_schema.replace('{', '[')
        table_schema = table_schema.replace('}', ']')
        system_message_template1 = f"""Generate the PostgreSQL query for the following task: {description}.
        The connection with the database is already setup and the table is called network.
        Enclose column names in double quotes ("), but do not use escape characters (e.g., "\").
        Do not assign aliases to the columns.
        Do not calculate new columns, unless specifically called to.
        Return only the PostgreSQL query, nothing else.
        The list of all the columns is as follows: {table_schema}
        Make sure the response should strictly follow JSON format. The key should be "Query" and the value should be the Postgresql query.
        Example Output JSON:
        ["Query": PostgreSQL Executable query]"""
               
        system_message_template = system_message_template1
        print(system_message_template)
        # Create the ChatPromptTemplate
        prompt = ChatPromptTemplate(
            messages=[
                SystemMessagePromptTemplate.from_template(system_message_template),
                # Placeholder for chat history
                MessagesPlaceholder(variable_name="chat_history"),
                # User's question will be dynamically inserted
                HumanMessagePromptTemplate.from_template("""
                    {question}
                """)
            ]
        )

        conversation = LLMChain(
            llm=gemini_model,
            prompt=prompt,
            verbose=True,
            memory=gemini_memory
        )


        print(prompt)
        response = conversation.invoke({'question': user_input})
        response = response['text']
        response = response.replace('\\', '')
        print(response)
       
        # Pattern to extract SQL query from the response
        patterns = [
            r"""```json\n{\s*"Query":\s*"(.*?)"}\n```""",
            r"""```json\n{\s*"Query":\s*"(.*?)"}\s*```""",
            r"""```json\s*{\s*"Query":\s*"(.*?)"\s*}\s*```""",
            r"""```json\s*{\s*"Query":\s*"(.*?)"\s*}```""",
            r"""```json\n{\n\s*"Query":\s*"(.*?)"\n}\n```""",
            r"""```json\s*\{\s*['"]Query['"]:\s*['"](.*?)['"]\s*\}\s*```""",
            r"""```json\s*\{\s*['"]Query['"]\s*:\s*['"](.*?)['"]\s*\}\s*```""",
            r"""```json\s*{\s*"Query"\s*:\s*"(.*?)"\s*}\s*```""",
            r"""```json\s*{\s*"Query"\s*:\s*\"(.*?)\"\s*}\s*```""",
            r"""\"Query\"\s*:\s*\"(.*?)\"""",
            r"""```json\s*\{\s*\"Query\":\s*\"(.*?)\"\s*\}\s*```""",
            r"""['"]Query['"]\s*:\s*['"](.*?)['"]""",
            r"""```json\s*{\s*"Query":\s*"(.*?)"}\s*```""",
]
        sql_query = None
        for pattern in patterns:
            matches = re.findall(pattern, response, re.DOTALL)
            if matches:
                sql_query = matches[0]
        
        print("jiji1")
        if sql_query:
            # Fetch data from database
            results = fetch_data_from_db(sql_query)
            print(results)
            column_names1 = extract_column_names(sql_query)
            column_names=column_names1
            print("jiji",column_names)

        else:
            column_names=[]
            results=[]

        pattern = r'```.*?```(.*)'
        match = re.search(pattern, response, re.DOTALL)
        print("GG",match)
        if match:
            response = match.group(1).strip()
            print("GG1",response)

        print(type(user_input_entities))
        print(type(response))
        print(type(sql_query))
        print(type(results))
        print("Process completed.")
        return user_input_entities, response, sql_query, results
   
    except Exception as e:
        print(f"Error generating SQL query: {e}")




def fetch_data_from_db(query):
    try:
        conn = psycopg2.connect(
            dbname='postgres',
            user='shivanshu',
            password='root',
            host='34.170.181.105',
            port='5432'
        )
        cursor = conn.cursor()
        cursor.execute(query)
        results = cursor.fetchall()
        cursor.close()
        conn.close()
        print(results)
        return results
    except Exception as e:
        print(f"Error fetching data from database: {e}")
        return []




def process_gradio(query, model_type):
    try:
        # Load the CSV file
        csv_loader = CSVLoader(file_path='des.csv')
        documents = csv_loader.load()

        # Define the vector DB paths
        vector_db_path_gemini = "faiss_index_gemini"
        vector_db_path_openai = "faiss_index_openai"

        # Check if the directory paths exist, if not, create them
        os.makedirs(vector_db_path_gemini, exist_ok=True)
        os.makedirs(vector_db_path_openai, exist_ok=True)

        # Determine the model to use
        if model_type == 'gemini':
            vector_db_path = vector_db_path_gemini
            embeddings = GoogleGenerativeAIEmbeddings(model="models/text-embedding-004", api_key=GOOGLE_API_KEY)
        else:
            vector_db_path = vector_db_path_openai
            embeddings = OpenAIEmbeddings()

        # Check if the FAISS index already exists
        index_file_path = os.path.join(vector_db_path, "index")
        if os.path.exists(index_file_path):
            vector_store = FAISS.load_local(vector_db_path, embeddings, allow_dangerous_deserialization=True)
        else:
            texts = [doc.page_content for doc in documents]
            vector_store = FAISS.from_texts(texts, embeddings)
            vector_store.save_local(vector_db_path)


        og_table_schema = fetch_table_schema()
        new_table_schema = {}


        # Generate SQL query
        if model_type == 'gemini':
            user_input_entities, response, sql_query, results = generate_sql_query_gemini(query, new_table_schema, vector_store, og_table_schema)
        else:
            user_input_entities, response, sql_query, results = generate_sql_query_openai(query, new_table_schema, vector_store, og_table_schema)


        return user_input_entities or {}, response or "", sql_query or "", results or {}




    except Exception as e:
        # Ensure the function still returns four values, even in case of an error
        return {}, str(e), "", []
   
image_path = r"C:\Users\shivanshu.t\Downloads\incedo-logo.png"


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=1):
            # Add the image in the left corner
            # gr.Image(value=image_path, show_label=False, height=45, width=45)
            # gr.HTML(f'<img src="{image_link}" alt="Logo" height="50" width="50">')
            # gr.Image(value=image_path, show_label=False, height=50, width=50)
            # gr.HTML(f'<img src="{image_path}" alt="Logo" height="50" width="100" style="display: block; margin-left: auto; margin-right: auto;">')
            # gr.HTML(f'<img src="https://mma.prnewswire.com/media/1807312/incedo_Logo.jpg" alt="Logo" height="50" width="80" style="display: block; margin-left: auto; margin-right: auto;">')
            gr.HTML(
                """
                <div style="text-align: left; padding: 10px;">
                    <img src="https://mma.prnewswire.com/media/1807312/incedo_Logo.jpg" alt="Logo" height="50" width="80">
                </div>
                """
            )
    
    gr.Markdown(
        """
        # Natural Language Query for Network Data
        <p style="font-size: 16px;">
        This app generates SQL queries from user queries using Google Gemini or OpenAI models.
        </p>
        <p style="font-size: 16px;">
            Click here to view the data: 
            <a href="https://docs.google.com/spreadsheets/d/1uYeHbqzz1NKL8e4tlzbIk8K5qgLfY_To-pjRjOGjWQg/edit?usp=sharing" target="_blank" style="color: #0066cc; text-decoration: none;">
                View Spreadsheet
            </a>
        </p>
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            query_input = gr.Textbox(label="Enter your query")
            model_input = gr.Radio(choices=["gemini", "openai"], label="Model Type", value="gemini")
            temperature_slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.7, label="Temperature", interactive=True)
            submit_button = gr.Button("Submit")

            gr.Examples(
                examples=[
                    ["What is the average latency for each network engineer?", "openai"],
                    ["Can you tell me what is the average RRC setup attempts, how is it distributed across time of the day? Can you also show me this distribution both for weekdays as well as weekends. Show me the data sorted by time of the day.", "openai"],
                    ["What is the average PRB utilization for each Network engineer, and give me this average both for the weekends as well for the weekdays. Show this for each network engineer averaged across four time periods, 12 midnight  - 6am , 6am -12 noon , 12 noon - 6pm , 6pm - 12 midnight.  Finally show me this data sorted by network engineer as well time periods.", "openai"]
                ],
                inputs=[query_input, model_input]
            )
       
        with gr.Column(scale=2):
            output_results = gr.DataFrame(label="Query Results")
            output_sql_query = gr.Textbox(label="Generated SQL Query")
            output_response = gr.Textbox(label="Similar Entities")
            # output_user_input_schema = gr.DataFrame(label="User Input Schema")
            output_user_input_schema = gr.JSON(label="Retrived KPIs")


           
    # Define the button click action
    def update_dataframe(query_input, model_input):
        global column_names

        # Process the query and model input
        user_input_entities, response, sql_query, results = process_gradio(query_input, model_input)
        
        # Check if column_names is not empty
        if column_names:
            output_results.headers = column_names  # Set headers with dynamic column names
        else:
            output_results.headers = []  # Set headers to an empty list for an empty DataFrame

        # Return the processed results
        return user_input_entities, response, sql_query, results




    def update_dataframe(query_input, model_input):
        global column_names

        # Process the query and model input
        user_input_entities, response, sql_query, results = process_gradio(query_input, model_input)
        
        # Check if column_names is not empty
        if column_names:
            output_results.headers = column_names  # Set headers with dynamic column names
        else:
            output_results.headers = []  # Set headers to an empty list for an empty DataFrame

        # Return the processed results
        return user_input_entities, response, sql_query, results


    submit_button.click(
        fn=update_dataframe,
        inputs=[query_input, model_input],
        outputs=[output_user_input_schema, output_response, output_sql_query, output_results]
    )

# Launch the app
demo.launch(debug=True)