import os import re import json import openai import psycopg2 import google.generativeai as genai import gradio as gr from langchain_community.document_loaders.csv_loader import CSVLoader from langchain.vectorstores import FAISS from langchain.embeddings.base import Embeddings from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings from langchain_core.prompts import ChatPromptTemplate from langchain.output_parsers.json import SimpleJsonOutputParser from langchain.memory import ConversationBufferMemory from langchain.chains import LLMChain from langchain_core.prompts import ( ChatPromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain import OpenAI # os.environ['GOOGLE_API_KEY'] = 'AIzaSyDLwJAr5iXL2Weaw1XphFNSeijytqOSbDg' # os.environ['OPENAI_API_KEY'] = 'sk-proj-Kh4UIWkfDxSGppQpooxXT3BlbkFJATohXqhpkJE6MqliIkmU' # # Set your API keys # OPENAI_API_KEY = 'sk-proj-Kh4UIWkfDxSGppQpooxXT3BlbkFJATohXqhpkJE6MqliIkmU' # GOOGLE_API_KEY = 'AIzaSyDLwJAr5iXL2Weaw1XphFNSeijytqOSbDg' # openai.api_key = OPENAI_API_KEY # genai.configure(api_key=GOOGLE_API_KEY) google_api_key = os.environ.get('GOOGLE_API_KEY') openai_api_key = os.environ.get('OPENAI_API_KEY') # Ensure that the API keys are set if not google_api_key or not openai_api_key: raise ValueError("API keys for Google and OpenAI must be set as environment variables.") # Set your API keys openai.api_key = openai_api_key genai.configure(api_key=google_api_key) class OpenAIEmbeddings(Embeddings): def embed_documents(self, texts): response = openai.Embedding.create( model="text-embedding-ada-002", api_key=OPENAI_API_KEY, input=texts ) embeddings = [e["embedding"] for e in response["data"]] return embeddings def embed_query(self, text): response = openai.Embedding.create( model="text-embedding-ada-002", api_key=OPENAI_API_KEY, input=[text] ) embedding = response["data"][0]["embedding"] return embedding class GeminiEmbeddings(GoogleGenerativeAIEmbeddings): def __init__(self, api_key): super().__init__(model="models/text-embedding-004", google_api_key=GOOGLE_API_KEY) def extract_entities_openai(query): prompt = f""" Find the entities from the query given below enclosed in triple quotes. Make sure to ONLY return response in JSON format, with the key as "KPI" and extracted entities as list. Example Output JSON: {{ "KPI": ["Extracted Entity 1", "Extracted Entity 2", ....] }} Query begins here: \"\"\"{query}\"\"\" """ response = openai.ChatCompletion.create( model="gpt-4", messages=[ {"role": "user", "content": prompt} ], temperature=0 ) return response['choices'][0]['message']['content'].strip() def extract_entities_gemini(query): try: llm_content_summary = ChatGoogleGenerativeAI( model="gemini-1.5-pro", temperature=0, max_tokens=250, timeout=None, max_retries=2, google_api_key=GOOGLE_API_KEY, ) prompt = ChatPromptTemplate.from_messages( [ ( "system", """Use the instructions below to generate responses based on user inputs. Return the answer as a JSON object.""", ), ("user", f"""Find the entities from the query given below enclosed in triple quotes. Make sure to ONLY return response in JSON format, with the key as "KPI" and extracted entities as list. Example Output JSON: "KPI": ["Extracted Entity 1", "Extracted Entity 2", ....] Query begins here: \"\"\"{query}\"\"\" """), ] ) json_parser = SimpleJsonOutputParser() chain = prompt | llm_content_summary | json_parser response = chain.invoke({"input": query}) if isinstance(response, dict): response = json.dumps(response) return response except Exception as e: print(f"Error generating content summary: {e}") return None def fetch_table_schema(): try: conn = psycopg2.connect( dbname='postgres', user='shivanshu', password='root', host='34.170.181.105', port='5432' ) cursor = conn.cursor() table_name = 'network' query = f""" SELECT column_name, data_type, character_maximum_length, is_nullable FROM information_schema.columns WHERE table_name = '{table_name}'; """ cursor.execute(query) rows = cursor.fetchall() cursor.close() schema_dict = { row[0]: { 'data_type': row[1], 'character_maximum_length': row[2], 'is_nullable': row[3] } for row in rows } return schema_dict except Exception as e: print(f"Error fetching table schema: {e}") return {} column_names=[] def extract_column_names(sql_query): # Use a regular expression to extract the part of the query between SELECT and FROM pattern = r'SELECT\s+(.*?)\s+FROM' match = re.search(pattern, sql_query, re.IGNORECASE | re.DOTALL) if not match: return [] columns_part = match.group(1).strip() # Split columns based on commas that are not within parentheses column_names = re.split(r',\s*(?![^()]*\))', columns_part) # Process each column to handle aliases and functions clean_column_names = [] for col in column_names: # Remove any function wrappers (e.g., TRIM, COUNT, etc.) col = re.sub(r'\b\w+\((.*?)\)', r'\1', col) # Remove any aliases (i.e., words following 'AS') col = re.split(r'\s+AS\s+', col, flags=re.IGNORECASE)[-1] # Strip any remaining whitespace or backticks/quotes col = col.strip(' `"[]') clean_column_names.append(col) return clean_column_names def process_sublist(sublist,similarity_threshold): processed_list = sublist[0:3] for index in range(3, len(sublist)): if sublist[index]['similarity'] >= similarity_threshold: processed_list.append(sublist[index]) else: break return processed_list from langchain_community.chat_models import ChatOpenAI # Initialize the OpenAI model and memory openai_model = ChatOpenAI(model='gpt-4', temperature=0, api_key=OPENAI_API_KEY) openai_memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) def generate_sql_query_openai(description, table_schema, vector_store, og_table_schema): global openai_model global openai_memory global column_names try: user_input = description print(user_input) entities = extract_entities_openai(user_input) entities_obj = json.loads(entities) kpis = entities_obj['KPI'] # Fetch similar documents final_results = [] similar_kpis = [] for kpi in kpis: docs = vector_store.similarity_search_with_score(kpi, k=6) results = [] count = 1 for doc, distance in docs: name_desc = doc.page_content.split("\nDescription: ") name = name_desc[0].replace("Name: ", "") description = name_desc[1] if len(name_desc) > 1 else "No description available." similarity_score = round((1 - distance) * 100, 2) # Convert distance to similarity score in percent results.append({"name": name, "description": description, "similarity": similarity_score, "Index": count}) similar_kpis.append({"name": name, "similarity": similarity_score}) count += 1 # Increment the count for each result final_results.append(results) # Process results similarity_threshold = 75.0 processed_sublists = [process_sublist(sublist,similarity_threshold) for sublist in final_results] flattened_results = [item for sublist in processed_sublists for item in sublist] user_input_entities = [item['name'] for item in flattened_results] print("BYE1",user_input_entities) try: # Strip whitespace and ensure case matches for comparison user_input_entities = [key.strip() for key in user_input_entities] og_table_schema_keys = [key.strip() for key in og_table_schema.keys()] # Check and create user_input_table_schema table_schema = {key: og_table_schema[key] for key in user_input_entities if key in og_table_schema_keys} print("BYE3",table_schema) except Exception as e: print(f"An error occurred: {e}") table_schema = json.dumps(table_schema) table_schema = table_schema.replace('{', '[') table_schema = table_schema.replace('}', ']') print("GG123") system_message_template1 = f"""Generate the PostgreSQL query for the following task: {description}. The connection with the database is already setup and the table is called network. Enclose column names in double quotes ("), but do not use escape characters (e.g., "\"). Do not assign aliases to the columns. Do not calculate new columns, unless specifically called to. Return only the PostgreSQL query, nothing else. The list of all the columns is as follows: {table_schema} Make sure the response should strictly follow JSON format. The key should be "Query" and the value should be the Postgresql query. Example Output JSON: ["Query": PostgreSQL Executable query]""" system_message_template = system_message_template1 print(system_message_template) # Create the ChatPromptTemplate print("GG1234") prompt = ChatPromptTemplate( messages=[ SystemMessagePromptTemplate.from_template(system_message_template), # Placeholder for chat history MessagesPlaceholder(variable_name="chat_history"), # User's question will be dynamically inserted HumanMessagePromptTemplate.from_template(""" {question} """) ] ) print("GG12345") conversation = LLMChain( llm=openai_model, prompt=prompt, verbose=True, memory=openai_memory ) print(prompt) response = conversation.invoke({'question': user_input}) response = response['text'] response = response.replace('\\', '') print(response) print("************************************************") print(type(response)) # Regular expression pattern to extract the query string pattern = r'{"Query":\s*"(.*?)"\s*}' # Extract the content sql_query = None match = re.search(pattern, response) if match: sql_query = match.group(1) print(sql_query) print("jiji1") if sql_query: # Fetch data from database results = fetch_data_from_db(sql_query) print(results) column_names1 = extract_column_names(sql_query) column_names=column_names1 print("jiji",column_names) else: column_names=[] results=[] pattern = r'```.*?```(.*)' match = re.search(pattern, response, re.DOTALL) print("GG",match) if match: response = match.group(1).strip() print("GG1",response) print(type(user_input_entities)) print(type(response)) print(type(sql_query)) print(type(results)) print("Process completed.") return user_input_entities, response, sql_query, results except Exception as e: print(f"Error generating SQL query: {e}") gemini_model = ChatGoogleGenerativeAI(model='gemini-1.5-pro-001',temperature=0,google_api_key = GOOGLE_API_KEY) gemini_memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) def generate_sql_query_gemini(description, table_schema,vector_store,og_table_schema): global gemini_model global gemini_memory global column_names try: user_input = description print(user_input) entities = extract_entities_gemini(user_input) entities_obj = json.loads(entities) kpis = entities_obj['KPI'] # Fetch similar documents final_results = [] similar_kpis = [] for kpi in kpis: docs = vector_store.similarity_search_with_score(kpi, k=6) results = [] count = 1 for doc, distance in docs: name_desc = doc.page_content.split("\nDescription: ") name = name_desc[0].replace("Name: ", "") description = name_desc[1] if len(name_desc) > 1 else "No description available." similarity_score = round((1 - distance) * 100, 2) # Convert distance to similarity score in percent results.append({"name": name, "description": description, "similarity": similarity_score, "Index": count}) similar_kpis.append({"name": name, "similarity": similarity_score}) count += 1 # Increment the count for each result final_results.append(results) # Process results similarity_threshold = 75.0 processed_sublists = [process_sublist(sublist,similarity_threshold) for sublist in final_results] flattened_results = [item for sublist in processed_sublists for item in sublist] user_input_entities = [item['name'] for item in flattened_results] print("BYE1",user_input_entities) try: # Strip whitespace and ensure case matches for comparison user_input_entities = [key.strip() for key in user_input_entities] og_table_schema_keys = [key.strip() for key in og_table_schema.keys()] # Check and create user_input_table_schema table_schema = {key: og_table_schema[key] for key in user_input_entities if key in og_table_schema_keys} print("BYE3",table_schema) except Exception as e: print(f"An error occurred: {e}") table_schema = json.dumps(table_schema) table_schema = table_schema.replace('{', '[') table_schema = table_schema.replace('}', ']') system_message_template1 = f"""Generate the PostgreSQL query for the following task: {description}. The connection with the database is already setup and the table is called network. Enclose column names in double quotes ("), but do not use escape characters (e.g., "\"). Do not assign aliases to the columns. Do not calculate new columns, unless specifically called to. Return only the PostgreSQL query, nothing else. The list of all the columns is as follows: {table_schema} Make sure the response should strictly follow JSON format. The key should be "Query" and the value should be the Postgresql query. Example Output JSON: ["Query": PostgreSQL Executable query]""" system_message_template = system_message_template1 print(system_message_template) # Create the ChatPromptTemplate prompt = ChatPromptTemplate( messages=[ SystemMessagePromptTemplate.from_template(system_message_template), # Placeholder for chat history MessagesPlaceholder(variable_name="chat_history"), # User's question will be dynamically inserted HumanMessagePromptTemplate.from_template(""" {question} """) ] ) conversation = LLMChain( llm=gemini_model, prompt=prompt, verbose=True, memory=gemini_memory ) print(prompt) response = conversation.invoke({'question': user_input}) response = response['text'] response = response.replace('\\', '') print(response) # Pattern to extract SQL query from the response patterns = [ r"""```json\n{\s*"Query":\s*"(.*?)"}\n```""", r"""```json\n{\s*"Query":\s*"(.*?)"}\s*```""", r"""```json\s*{\s*"Query":\s*"(.*?)"\s*}\s*```""", r"""```json\s*{\s*"Query":\s*"(.*?)"\s*}```""", r"""```json\n{\n\s*"Query":\s*"(.*?)"\n}\n```""", r"""```json\s*\{\s*['"]Query['"]:\s*['"](.*?)['"]\s*\}\s*```""", r"""```json\s*\{\s*['"]Query['"]\s*:\s*['"](.*?)['"]\s*\}\s*```""", r"""```json\s*{\s*"Query"\s*:\s*"(.*?)"\s*}\s*```""", r"""```json\s*{\s*"Query"\s*:\s*\"(.*?)\"\s*}\s*```""", r"""\"Query\"\s*:\s*\"(.*?)\"""", r"""```json\s*\{\s*\"Query\":\s*\"(.*?)\"\s*\}\s*```""", r"""['"]Query['"]\s*:\s*['"](.*?)['"]""", r"""```json\s*{\s*"Query":\s*"(.*?)"}\s*```""", ] sql_query = None for pattern in patterns: matches = re.findall(pattern, response, re.DOTALL) if matches: sql_query = matches[0] print("jiji1") if sql_query: # Fetch data from database results = fetch_data_from_db(sql_query) print(results) column_names1 = extract_column_names(sql_query) column_names=column_names1 print("jiji",column_names) else: column_names=[] results=[] pattern = r'```.*?```(.*)' match = re.search(pattern, response, re.DOTALL) print("GG",match) if match: response = match.group(1).strip() print("GG1",response) print(type(user_input_entities)) print(type(response)) print(type(sql_query)) print(type(results)) print("Process completed.") return user_input_entities, response, sql_query, results except Exception as e: print(f"Error generating SQL query: {e}") def fetch_data_from_db(query): try: conn = psycopg2.connect( dbname='postgres', user='shivanshu', password='root', host='34.170.181.105', port='5432' ) cursor = conn.cursor() cursor.execute(query) results = cursor.fetchall() cursor.close() conn.close() print(results) return results except Exception as e: print(f"Error fetching data from database: {e}") return [] def process_gradio(query, model_type): try: # Load the CSV file csv_loader = CSVLoader(file_path='des.csv') documents = csv_loader.load() # Define the vector DB paths vector_db_path_gemini = "faiss_index_gemini" vector_db_path_openai = "faiss_index_openai" # Check if the directory paths exist, if not, create them os.makedirs(vector_db_path_gemini, exist_ok=True) os.makedirs(vector_db_path_openai, exist_ok=True) # Determine the model to use if model_type == 'gemini': vector_db_path = vector_db_path_gemini embeddings = GoogleGenerativeAIEmbeddings(model="models/text-embedding-004", api_key=GOOGLE_API_KEY) else: vector_db_path = vector_db_path_openai embeddings = OpenAIEmbeddings() # Check if the FAISS index already exists index_file_path = os.path.join(vector_db_path, "index") if os.path.exists(index_file_path): vector_store = FAISS.load_local(vector_db_path, embeddings, allow_dangerous_deserialization=True) else: texts = [doc.page_content for doc in documents] vector_store = FAISS.from_texts(texts, embeddings) vector_store.save_local(vector_db_path) og_table_schema = fetch_table_schema() new_table_schema = {} # Generate SQL query if model_type == 'gemini': user_input_entities, response, sql_query, results = generate_sql_query_gemini(query, new_table_schema, vector_store, og_table_schema) else: user_input_entities, response, sql_query, results = generate_sql_query_openai(query, new_table_schema, vector_store, og_table_schema) return user_input_entities or {}, response or "", sql_query or "", results or {} except Exception as e: # Ensure the function still returns four values, even in case of an error return {}, str(e), "", [] image_path = r"C:\Users\shivanshu.t\Downloads\incedo-logo.png" with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=1): # Add the image in the left corner # gr.Image(value=image_path, show_label=False, height=45, width=45) # gr.HTML(f'Logo') gr.Image(value=image_path, show_label=False, height=50, width=50) # gr.HTML(f'Logo') gr.Markdown( """ # Natural Language Query for Network Data

This app generates SQL queries from user queries using Google Gemini or OpenAI models.

Click here to view the data: View Spreadsheet

""" ) with gr.Row(): with gr.Column(scale=1): query_input = gr.Textbox(label="Enter your query") model_input = gr.Radio(choices=["gemini", "openai"], label="Model Type", value="gemini") temperature_slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.7, label="Temperature", interactive=True) submit_button = gr.Button("Submit") gr.Examples( examples=[ ["What is the average latency for each network engineer?", "openai"], ["Can you tell me what is the average RRC setup attempts, how is it distributed across time of the day? Can you also show me this distribution both for weekdays as well as weekends. Show me the data sorted by time of the day.", "openai"], ["What is the average PRB utilization for each Network engineer, and give me this average both for the weekends as well for the weekdays. Show this for each network engineer averaged across four time periods, 12 midnight - 6am , 6am -12 noon , 12 noon - 6pm , 6pm - 12 midnight. Finally show me this data sorted by network engineer as well time periods.", "openai"] ], inputs=[query_input, model_input] ) with gr.Column(scale=2): output_results = gr.DataFrame(label="Query Results") output_sql_query = gr.Textbox(label="Generated SQL Query") output_response = gr.Textbox(label="Similar Entities") # output_user_input_schema = gr.DataFrame(label="User Input Schema") output_user_input_schema = gr.JSON(label="Retrived KPIs") # Define the button click action def update_dataframe(query_input, model_input): global column_names # Process the query and model input user_input_entities, response, sql_query, results = process_gradio(query_input, model_input) # Check if column_names is not empty if column_names: output_results.headers = column_names # Set headers with dynamic column names else: output_results.headers = [] # Set headers to an empty list for an empty DataFrame # Return the processed results return user_input_entities, response, sql_query, results def update_dataframe(query_input, model_input): global column_names # Process the query and model input user_input_entities, response, sql_query, results = process_gradio(query_input, model_input) # Check if column_names is not empty if column_names: output_results.headers = column_names # Set headers with dynamic column names else: output_results.headers = [] # Set headers to an empty list for an empty DataFrame # Return the processed results return user_input_entities, response, sql_query, results submit_button.click( fn=update_dataframe, inputs=[query_input, model_input], outputs=[output_user_input_schema, output_response, output_sql_query, output_results] ) # Launch the app demo.launch(debug=True)