from langchain.callbacks.base import BaseCallbackHandler from langchain.schema import ChatMessage from langchain_openai import ChatOpenAI import streamlit as st st.set_page_config(page_title="Streamlit + Langchain") st.title("Basic Chatbot with Streamlit and Langchain") st.caption("Features text streaming") class StreamHandler(BaseCallbackHandler): def __init__(self, container, text=""): self.container = container self.text = text def on_llm_new_token(self, token: str, **kwargs) -> None: self.text += token self.container.markdown(self.text) # Text input to enter OpenAI API key with st.sidebar: OPENAI_API_KEY = st.text_input("Enter your OpenAI API Key", type="password") # Streamlit session state if "messages" not in st.session_state: st.session_state["messages"] = [ ChatMessage(role="assistant", content="How can I help you?") ] # Display all chat messages from session state for message in st.session_state.messages: st.chat_message(message.role).write(message.content) # If user submits a prompt in the text input, continue if prompt := st.chat_input(): if not OPENAI_API_KEY: st.error("Please add your OpenAI API key to continue.") st.stop() # Add user's prompt to the chat messages st.session_state.messages.append(ChatMessage(role="user", content=prompt)) st.chat_message("user").write(prompt) # Display the assistant's response with langchain query with st.chat_message("assistant"): stream_handler = StreamHandler(st.empty()) llm = ChatOpenAI( model="gpt-4o-mini", openai_api_key=OPENAI_API_KEY, streaming=True, callbacks=[stream_handler], ) response = llm.invoke(st.session_state.messages) st.session_state.messages.append( ChatMessage(role="assistant", content=response.content) )