Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -64,16 +64,16 @@ bertscore = load_metric('bertscore')
|
|
64 |
MAX_INPUT_LENGTH = 256
|
65 |
MAX_TARGET_LENGTH = 128
|
66 |
|
67 |
-
|
68 |
def preprocess_function(examples):
|
69 |
-
|
70 |
Preprocess entries of the given dataset
|
71 |
|
72 |
Params:
|
73 |
examples (Dataset): dataset to be preprocessed
|
74 |
Returns:
|
75 |
model_inputs (BatchEncoding): tokenized dataset entries
|
76 |
-
|
77 |
inputs, targets = [], []
|
78 |
for i in range(len(examples['question'])):
|
79 |
inputs.append(f"Antwort: {examples['provided_answer'][i]} Lösung: {examples['reference_answer'][i]} Frage: {examples['question'][i]}")
|
@@ -86,7 +86,7 @@ def preprocess_function(examples):
|
|
86 |
model_inputs['labels'] = labels['input_ids']
|
87 |
|
88 |
return model_inputs
|
89 |
-
|
90 |
|
91 |
|
92 |
def flatten_list(l):
|
@@ -190,9 +190,6 @@ def get_predictions_labels(model, dataloader, tokenizer):
|
|
190 |
return predictions, labels
|
191 |
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
def load_data():
|
197 |
df = pd.DataFrame(columns=['Model', 'Dataset', 'SacreBLEU', 'ROUGE-2', 'METEOR', 'BERTScore', 'Accuracy', 'Weighted F1', 'Macro F1'])
|
198 |
for ds in all_datasets:
|
@@ -200,28 +197,6 @@ def load_data():
|
|
200 |
model = AutoModelForSeq2SeqLM.from_pretrained(get_model(ds))
|
201 |
tokenizer = AutoTokenizer.from_pretrained(get_tokenizer(ds))
|
202 |
|
203 |
-
def preprocess_function(examples):
|
204 |
-
"""
|
205 |
-
Preprocess entries of the given dataset
|
206 |
-
|
207 |
-
Params:
|
208 |
-
examples (Dataset): dataset to be preprocessed
|
209 |
-
Returns:
|
210 |
-
model_inputs (BatchEncoding): tokenized dataset entries
|
211 |
-
"""
|
212 |
-
inputs, targets = [], []
|
213 |
-
for i in range(len(examples['question'])):
|
214 |
-
inputs.append(f"Antwort: {examples['provided_answer'][i]} Lösung: {examples['reference_answer'][i]} Frage: {examples['question'][i]}")
|
215 |
-
targets.append(f"{examples['verification_feedback'][i]} Feedback: {examples['answer_feedback'][i]}")
|
216 |
-
|
217 |
-
# apply tokenization to inputs and labels
|
218 |
-
model_inputs = tokenizer(inputs, max_length=MAX_INPUT_LENGTH, padding='max_length', truncation=True)
|
219 |
-
labels = tokenizer(text_target=targets, max_length=MAX_TARGET_LENGTH, padding='max_length', truncation=True)
|
220 |
-
|
221 |
-
model_inputs['labels'] = labels['input_ids']
|
222 |
-
|
223 |
-
return model_inputs
|
224 |
-
|
225 |
processed_dataset = split.map(
|
226 |
preprocess_function,
|
227 |
batched=True,
|
|
|
64 |
MAX_INPUT_LENGTH = 256
|
65 |
MAX_TARGET_LENGTH = 128
|
66 |
|
67 |
+
|
68 |
def preprocess_function(examples):
|
69 |
+
"""
|
70 |
Preprocess entries of the given dataset
|
71 |
|
72 |
Params:
|
73 |
examples (Dataset): dataset to be preprocessed
|
74 |
Returns:
|
75 |
model_inputs (BatchEncoding): tokenized dataset entries
|
76 |
+
"""
|
77 |
inputs, targets = [], []
|
78 |
for i in range(len(examples['question'])):
|
79 |
inputs.append(f"Antwort: {examples['provided_answer'][i]} Lösung: {examples['reference_answer'][i]} Frage: {examples['question'][i]}")
|
|
|
86 |
model_inputs['labels'] = labels['input_ids']
|
87 |
|
88 |
return model_inputs
|
89 |
+
|
90 |
|
91 |
|
92 |
def flatten_list(l):
|
|
|
190 |
return predictions, labels
|
191 |
|
192 |
|
|
|
|
|
|
|
193 |
def load_data():
|
194 |
df = pd.DataFrame(columns=['Model', 'Dataset', 'SacreBLEU', 'ROUGE-2', 'METEOR', 'BERTScore', 'Accuracy', 'Weighted F1', 'Macro F1'])
|
195 |
for ds in all_datasets:
|
|
|
197 |
model = AutoModelForSeq2SeqLM.from_pretrained(get_model(ds))
|
198 |
tokenizer = AutoTokenizer.from_pretrained(get_tokenizer(ds))
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
processed_dataset = split.map(
|
201 |
preprocess_function,
|
202 |
batched=True,
|