Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -64,15 +64,16 @@ bertscore = load_metric('bertscore')
|
|
64 |
MAX_INPUT_LENGTH = 256
|
65 |
MAX_TARGET_LENGTH = 128
|
66 |
|
67 |
-
|
68 |
-
|
|
|
69 |
Preprocess entries of the given dataset
|
70 |
|
71 |
Params:
|
72 |
examples (Dataset): dataset to be preprocessed
|
73 |
Returns:
|
74 |
model_inputs (BatchEncoding): tokenized dataset entries
|
75 |
-
|
76 |
inputs, targets = [], []
|
77 |
for i in range(len(examples['question'])):
|
78 |
inputs.append(f"Antwort: {examples['provided_answer'][i]} Lösung: {examples['reference_answer'][i]} Frage: {examples['question'][i]}")
|
@@ -85,6 +86,7 @@ def preprocess_function(examples, tokenizer):
|
|
85 |
model_inputs['labels'] = labels['input_ids']
|
86 |
|
87 |
return model_inputs
|
|
|
88 |
|
89 |
|
90 |
def flatten_list(l):
|
@@ -198,6 +200,28 @@ def load_data():
|
|
198 |
model = AutoModelForSeq2SeqLM.from_pretrained(get_model(ds))
|
199 |
tokenizer = AutoTokenizer.from_pretrained(get_tokenizer(ds))
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
processed_dataset = split.map(
|
202 |
preprocess_function,
|
203 |
batched=True,
|
|
|
64 |
MAX_INPUT_LENGTH = 256
|
65 |
MAX_TARGET_LENGTH = 128
|
66 |
|
67 |
+
"""
|
68 |
+
def preprocess_function(examples):
|
69 |
+
|
70 |
Preprocess entries of the given dataset
|
71 |
|
72 |
Params:
|
73 |
examples (Dataset): dataset to be preprocessed
|
74 |
Returns:
|
75 |
model_inputs (BatchEncoding): tokenized dataset entries
|
76 |
+
|
77 |
inputs, targets = [], []
|
78 |
for i in range(len(examples['question'])):
|
79 |
inputs.append(f"Antwort: {examples['provided_answer'][i]} Lösung: {examples['reference_answer'][i]} Frage: {examples['question'][i]}")
|
|
|
86 |
model_inputs['labels'] = labels['input_ids']
|
87 |
|
88 |
return model_inputs
|
89 |
+
"""
|
90 |
|
91 |
|
92 |
def flatten_list(l):
|
|
|
200 |
model = AutoModelForSeq2SeqLM.from_pretrained(get_model(ds))
|
201 |
tokenizer = AutoTokenizer.from_pretrained(get_tokenizer(ds))
|
202 |
|
203 |
+
def preprocess_function(examples):
|
204 |
+
"""
|
205 |
+
Preprocess entries of the given dataset
|
206 |
+
|
207 |
+
Params:
|
208 |
+
examples (Dataset): dataset to be preprocessed
|
209 |
+
Returns:
|
210 |
+
model_inputs (BatchEncoding): tokenized dataset entries
|
211 |
+
"""
|
212 |
+
inputs, targets = [], []
|
213 |
+
for i in range(len(examples['question'])):
|
214 |
+
inputs.append(f"Antwort: {examples['provided_answer'][i]} Lösung: {examples['reference_answer'][i]} Frage: {examples['question'][i]}")
|
215 |
+
targets.append(f"{examples['verification_feedback'][i]} Feedback: {examples['answer_feedback'][i]}")
|
216 |
+
|
217 |
+
# apply tokenization to inputs and labels
|
218 |
+
model_inputs = tokenizer(inputs, max_length=MAX_INPUT_LENGTH, padding='max_length', truncation=True)
|
219 |
+
labels = tokenizer(text_target=targets, max_length=MAX_TARGET_LENGTH, padding='max_length', truncation=True)
|
220 |
+
|
221 |
+
model_inputs['labels'] = labels['input_ids']
|
222 |
+
|
223 |
+
return model_inputs
|
224 |
+
|
225 |
processed_dataset = split.map(
|
226 |
preprocess_function,
|
227 |
batched=True,
|