MCK-02 commited on
Commit
e11991c
·
1 Parent(s): aa54fc9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +99 -0
app.py CHANGED
@@ -23,6 +23,7 @@ def get_datasets():
23
 
24
  all_datasets = get_datasets()
25
 
 
26
  def get_split(dataset_name):
27
  if dataset_name == "Communication Networks: unseen questions":
28
  split = load_dataset("Short-Answer-Feedback/saf_communication_networks_english", split="test_unseen_questions")
@@ -37,6 +38,7 @@ def get_split(dataset_name):
37
  if dataset_name == "Legal Domain: unseen answers":
38
  split = load_dataset("Short-Answer-Feedback/saf_legal_domain_german", split="test_unseen_answers")
39
  return split
 
40
 
41
  def get_model(datasetname):
42
  if datasetname == "Communication Networks: unseen questions" or datasetname == "Communication Networks: unseen answers":
@@ -47,6 +49,7 @@ def get_model(datasetname):
47
  model = "Short-Answer-Feedback/mbart-finetuned-saf-legal-domain"
48
  return model
49
 
 
50
  def get_tokenizer(datasetname):
51
  if datasetname == "Communication Networks: unseen questions" or datasetname == "Communication Networks: unseen answers":
52
  tokenizer = "Short-Answer-Feedback/bart-finetuned-saf-communication-networks"
@@ -234,6 +237,102 @@ def load_data():
234
 
235
  df = pd.concat([df, new_row])
236
  return df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237
 
238
  dataframe = load_data()
239
 
 
23
 
24
  all_datasets = get_datasets()
25
 
26
+ '''
27
  def get_split(dataset_name):
28
  if dataset_name == "Communication Networks: unseen questions":
29
  split = load_dataset("Short-Answer-Feedback/saf_communication_networks_english", split="test_unseen_questions")
 
38
  if dataset_name == "Legal Domain: unseen answers":
39
  split = load_dataset("Short-Answer-Feedback/saf_legal_domain_german", split="test_unseen_answers")
40
  return split
41
+ '''
42
 
43
  def get_model(datasetname):
44
  if datasetname == "Communication Networks: unseen questions" or datasetname == "Communication Networks: unseen answers":
 
49
  model = "Short-Answer-Feedback/mbart-finetuned-saf-legal-domain"
50
  return model
51
 
52
+ '''
53
  def get_tokenizer(datasetname):
54
  if datasetname == "Communication Networks: unseen questions" or datasetname == "Communication Networks: unseen answers":
55
  tokenizer = "Short-Answer-Feedback/bart-finetuned-saf-communication-networks"
 
237
 
238
  df = pd.concat([df, new_row])
239
  return df
240
+ '''
241
+
242
+ def get_rows(datasetname):
243
+ if datasetname == "Communication Networks: unseen questions":
244
+ row = pd.DataFrame(
245
+ {
246
+ 'Model': get_model(datasetname),
247
+ 'Dataset': datasetname,
248
+ 'SacreBLEU': [2.4],
249
+ 'ROUGE-2': [20.1],
250
+ 'METEOR': [28.5],
251
+ 'BERTScore': [36.6],
252
+ 'Accuracy': [51.6],
253
+ 'Weighted F1': [41.0],
254
+ 'Macro F1': [27.9],
255
+ }
256
+ )
257
+
258
+ if datasetname == "Communication Networks: unseen answers":
259
+ row = pd.DataFrame(
260
+ {
261
+ 'Model': get_model(datasetname),
262
+ 'Dataset': datasetname,
263
+ 'SacreBLEU': [36.0],
264
+ 'ROUGE-2': [49.1],
265
+ 'METEOR': [60.8],
266
+ 'BERTScore': [69.5],
267
+ 'Accuracy': [76.0],
268
+ 'Weighted F1': [73.0],
269
+ 'Macro F1: [53.4]'
270
+ }
271
+ )
272
+ if datasetname == "Micro Job: unseen questions":
273
+ row = pd.DataFrame(
274
+ {
275
+ 'Model': get_model(datasetname),
276
+ 'Dataset': datasetname,
277
+ 'SacreBLEU': [0.3],
278
+ 'ROUGE-2': [0.5],
279
+ 'METEOR': [33.8],
280
+ 'BERTScore': [31.3],
281
+ 'Accuracy': [48.7],
282
+ 'Weighted F1': [46.5],
283
+ 'Macro F1': [40.6],
284
+ }
285
+ )
286
+ if datasetname == "Micro Job: unseen answers":
287
+ row = pd.DataFrame(
288
+ {
289
+ 'Model': get_model(datasetname),
290
+ 'Dataset': datasetname,
291
+ 'SacreBLEU': [39.5],
292
+ 'ROUGE-2': [29.8],
293
+ 'METEOR': [63.3],
294
+ 'BERTScore': [63.1],
295
+ 'Accuracy': [80.1],
296
+ 'Weighted F1': [80.3],
297
+ 'Macro F1': [80.7],
298
+ }
299
+ )
300
+ if datasetname == "Legal Domain: unseen questions":
301
+ row = pd.DataFrame(
302
+ {
303
+ 'Model': get_model(datasetname),
304
+ 'Dataset': datasetname,
305
+ 'SacreBLEU': [3.2],
306
+ 'ROUGE-2': [5.0],
307
+ 'METEOR': [20.0],
308
+ 'BERTScore': [14.8],
309
+ 'Accuracy': [60.7],
310
+ 'Weighted F1': [55.3],
311
+ 'Macro F1': [55.4],
312
+ }
313
+ )
314
+ if datasetname == "Legal Domain: unseen answers":
315
+ row = pd.DataFrame(
316
+ {
317
+ 'Model': get_model(datasetname),
318
+ 'Dataset': datasetname,
319
+ 'SacreBLEU': [42.8],
320
+ 'ROUGE-2': [43.7],
321
+ 'METEOR': [58.2],
322
+ 'BERTScore': [57.5],
323
+ 'Accuracy': [81.0],
324
+ 'Weighted F1': [80.1],
325
+ 'Macro F1': [74.6],
326
+ }
327
+ )
328
+ return row
329
+
330
+ def load_data():
331
+ df = pd.DataFrame(columns=['Model', 'Dataset', 'SacreBLEU', 'ROUGE-2', 'METEOR', 'BERTScore', 'Accuracy', 'Weighted F1', 'Macro F1'])
332
+ for ds in all_datasets:
333
+ new_row = get_rows(ds)
334
+ df = pd.concat([df, new_row])
335
+ return df
336
 
337
  dataframe = load_data()
338