PixelFlow-Text2Image / pixelflow /scheduling_pixelflow.py
ShoufaChen's picture
init
137645c verified
raw
history blame
4.35 kB
import math
import numpy as np
import torch
def cal_rectify_ratio(start_t, gamma):
return 1 / (math.sqrt(1 - (1 / gamma)) * (1 - start_t) + start_t)
class PixelFlowScheduler:
def __init__(self, num_train_timesteps, num_stages, gamma=-1 / 3):
assert num_stages > 0, f"num_stages must be positive, got {num_stages}"
self.num_stages = num_stages
self.gamma = gamma
self.Timesteps = torch.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=torch.float32)
self.t = self.Timesteps / num_train_timesteps # normalized time in [0, 1]
self.stage_range = [x / num_stages for x in range(num_stages + 1)]
self.original_start_t = dict()
self.start_t, self.end_t = dict(), dict()
self.t_window_per_stage = dict()
self.Timesteps_per_stage = dict()
stage_distance = list()
# stage_idx = 0: min t, min resolution, most noisy
# stage_idx = num_stages - 1 : max t, max resolution, most clear
for stage_idx in range(num_stages):
start_idx = max(int(num_train_timesteps * self.stage_range[stage_idx]), 0)
end_idx = min(int(num_train_timesteps * self.stage_range[stage_idx + 1]), num_train_timesteps)
start_t = self.t[start_idx].item()
end_t = self.t[end_idx].item() if end_idx < num_train_timesteps else 1.0
self.original_start_t[stage_idx] = start_t
if stage_idx > 0:
start_t *= cal_rectify_ratio(start_t, gamma)
self.start_t[stage_idx] = start_t
self.end_t[stage_idx] = end_t
stage_distance.append(end_t - start_t)
total_stage_distance = sum(stage_distance)
t_within_stage = torch.linspace(0, 1, num_train_timesteps + 1, dtype=torch.float64)[:-1]
for stage_idx in range(num_stages):
start_ratio = 0.0 if stage_idx == 0 else sum(stage_distance[:stage_idx]) / total_stage_distance
end_ratio = 1.0 if stage_idx == num_stages - 1 else sum(stage_distance[:stage_idx + 1]) / total_stage_distance
Timestep_start = self.Timesteps[int(num_train_timesteps * start_ratio)]
Timestep_end = self.Timesteps[min(int(num_train_timesteps * end_ratio), num_train_timesteps - 1)]
self.t_window_per_stage[stage_idx] = t_within_stage
if stage_idx == num_stages - 1:
self.Timesteps_per_stage[stage_idx] = torch.linspace(Timestep_start.item(), Timestep_end.item(), num_train_timesteps, dtype=torch.float64)
else:
self.Timesteps_per_stage[stage_idx] = torch.linspace(Timestep_start.item(), Timestep_end.item(), num_train_timesteps + 1, dtype=torch.float64)[:-1]
@staticmethod
def time_linear_to_Timesteps(t, t_start, t_end, T_start, T_end):
"""
linearly map t to T: T = k * t + b
"""
k = (T_end - T_start) / (t_end - t_start)
b = T_start - t_start * k
return k * t + b
def set_timesteps(self, num_inference_steps, stage_index, device=None, shift=1.0):
self.num_inference_steps = num_inference_steps
stage_T_start = self.Timesteps_per_stage[stage_index][0].item()
stage_T_end = self.Timesteps_per_stage[stage_index][-1].item()
t_start = self.t_window_per_stage[stage_index][0].item()
t_end = self.t_window_per_stage[stage_index][-1].item()
t = np.linspace(t_start, t_end, num_inference_steps, dtype=np.float64)
t = t / (shift + (1 - shift) * t)
Timesteps = self.time_linear_to_Timesteps(t, t_start, t_end, stage_T_start, stage_T_end)
self.Timesteps = torch.from_numpy(Timesteps).to(device=device)
self.t = torch.from_numpy(np.append(t, 1.0)).to(device=device, dtype=torch.float64)
self._step_index = None
def step(self, model_output, sample):
if self.step_index is None:
self._step_index = 0
sample = sample.to(torch.float32)
t = self.t[self.step_index].float()
t_next = self.t[self.step_index + 1].float()
prev_sample = sample + (t_next - t) * model_output
self._step_index += 1
return prev_sample.to(model_output.dtype)
@property
def step_index(self):
"""Current step index for the scheduler."""
return self._step_index