import gradio as gr import spaces from styletts2 import tts import re import numpy as np from scipy.io.wavfile import write import nltk nltk.download('punkt') from nltk.tokenize import word_tokenize import torch import phonemizer # en-us INTRO = """

A StyleTTS2 fine-tune, designed for expressiveness.


""" js_func = """ function refresh() { const url = new URL(window.location); if (url.searchParams.get('__theme') !== 'light') { url.searchParams.set('__theme', 'light'); window.location.href = url.href; } } """ examples = [ ["./Examples/David Attenborough.wav", "An understanding of the natural world is a source of not only great curiosity, but great fulfilment.", 1, 0.2, 0.5, 1, 200], ["./Examples/Linus Tech Tips.wav", "sometimes I get so in the zone while building a computer it's like an out of body experience.", 1, 0.2, 0.8, 2, 200], ["./Examples/Melina.wav", "If you intend to claim the Frenzied Flame, I ask that you cease. It is not to be meddled with. It is chaos, " "devouring life and thought unending. However ruined this world has become, " "however mired in torment and despair, life endures.", 0.95, 0.2, 0.5, 2, 200], ["./Examples/Patrick Bateman.wav", "My Pain Is Constant And Sharp, And I Do Not Wish For A Better World For Anyone.", 1, 0.1, 0.3, 2, 200], ["./Examples/Furina.ogg", "That's more like it! As expected, my dazzling side comes through in any situation.", 1, 0.2, 0.8, 2, 200] ] theme = gr.themes.Soft( primary_hue=gr.themes.Color(c100="#ffd7d1", c200="#ff593e", c300="#ff593e", c400="#ff593e", c50="#fff0f0", c500="#ff593e", c600="#ea580c", c700="#c2410c", c800="#9a3412", c900="#7c2d12", c950="#6c2e12"), secondary_hue="orange", radius_size=gr.themes.Size(lg="20px", md="8px", sm="6px", xl="30px", xs="4px", xxl="40px", xxs="2px"), font=[gr.themes.GoogleFont('M PLUS Rounded 1c'), 'ui-sans-serif', 'system-ui', 'sans-serif'], ).set( block_background_fill='*neutral_50' ) # eventually swap to something else global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True, language_switch="remove-flags", tie=False) def split_and_recombine_text(text, desired_length=200, max_length=300): """Split text it into chunks of a desired length trying to keep sentences intact.""" # normalize text, remove redundant whitespace and convert non-ascii quotes to ascii text = re.sub(r'\n\n+', '\n', text) text = re.sub(r'\s+', ' ', text) text = re.sub(r'[“”]', '"', text) rv = [] in_quote = False current = "" split_pos = [] pos = -1 end_pos = len(text) - 1 def seek(delta): nonlocal pos, in_quote, current is_neg = delta < 0 for _ in range(abs(delta)): if is_neg: pos -= 1 current = current[:-1] else: pos += 1 current += text[pos] if text[pos] == '"': in_quote = not in_quote return text[pos] def peek(delta): p = pos + delta return text[p] if p < end_pos and p >= 0 else "" def commit(): nonlocal rv, current, split_pos rv.append(current) current = "" split_pos = [] while pos < end_pos: c = seek(1) # do we need to force a split? if len(current) >= max_length: if len(split_pos) > 0 and len(current) > (desired_length / 2): # we have at least one sentence and we are over half the desired length, seek back to the last split d = pos - split_pos[-1] seek(-d) else: # no full sentences, seek back until we are not in the middle of a word and split there while c not in '!?.\n ' and pos > 0 and len(current) > desired_length: c = seek(-1) commit() # check for sentence boundaries elif not in_quote and (c in '!?\n' or (c == '.' and peek(1) in '\n ')): # seek forward if we have consecutive boundary markers but still within the max length while pos < len(text) - 1 and len(current) < max_length and peek(1) in '!?.': c = seek(1) split_pos.append(pos) if len(current) >= desired_length: commit() # treat end of quote as a boundary if its followed by a space or newline elif in_quote and peek(1) == '"' and peek(2) in '\n ': seek(2) split_pos.append(pos) rv.append(current) # clean up, remove lines with only whitespace or punctuation rv = [s.strip() for s in rv] rv = [s for s in rv if len(s) > 0 and not re.match(r'^[\s\.,;:!?]*$', s)] return rv def text_to_phonemes(text): text = text.strip() print("Text before phonemization: ", text) ps = global_phonemizer.phonemize([text]) print("Text after phonemization: ", ps) ps = word_tokenize(ps[0]) ps = ' '.join(ps) print("Final text after tokenization: ", ps) return ps @spaces.GPU def generate(audio_path, ins, speed, alpha, beta, embedding, steps=200): ref_s = other_tts.compute_style(audio_path) print(ref_s.size()) s_prev = None texts = split_and_recombine_text(ins) audio = np.array([]) for i in texts: i = text_to_phonemes(i) synthaud, s_prev = other_tts.long_inference_segment(i, diffusion_steps=steps, alpha=alpha, beta=beta, is_phonemes=True, embedding_scale=embedding, prev_s=s_prev, ref_s=ref_s, speed=speed, t=0.8) # S-Curve np_log_99 = np.log(99) def s_curve(p): assert 0 <= p and p <= 1, p if p == 0 or p == 1: return p p = (2*p - 1) * np_log_99 s = 1 / (1 + np.exp(-p)) s = (s - 0.01) * 50 / 49 assert 0 <= s and s <= 1, s return s # Post-Processing thresh = np.percentile(np.abs(synthaud), 95) CUT_SAMPLES = 20000 # max samples to cut, in practice only 4-6k are actually cut lead_percent = 0.008 trail_percent = 0.009 # Leading artefact removal left = CUT_SAMPLES + int(len(synthaud) * lead_percent) for j in range(left): if abs(synthaud[j]) > thresh: left = j break left = max(0, min(left - int(len(synthaud) * lead_percent), CUT_SAMPLES)) synthaud[:left] = 0 for k in range(int(len(synthaud) * lead_percent)): s = s_curve(k / int(len(synthaud) * lead_percent)) synthaud[k + left] *= s # Trailing artefact removal right = len(synthaud) - CUT_SAMPLES - int(len(synthaud) * trail_percent) for j in range(len(synthaud) - 1, right, -1): if abs(synthaud[j]) > thresh: right = j break right = min(len(synthaud), max(right + int(len(synthaud) * trail_percent), len(synthaud) - CUT_SAMPLES)) synthaud[right:] = 0 for k in range(int(len(synthaud) * trail_percent)): s = s_curve(k / int(len(synthaud) * trail_percent)) synthaud[right - int(len(synthaud) * trail_percent) + k] *= (1 - s) audio = np.concatenate((audio, synthaud)) scaled = np.int16(audio / np.max(np.abs(audio)) * 32767) return 24000, scaled other_tts = tts.StyleTTS2(model_checkpoint_path='./epoch_2nd_00012.pth', config_path="models/config_ft.yml") if torch.cuda.is_available(): other_tts.device = "cuda" else: other_tts.device = "cpu" with gr.Blocks(theme=theme, js=js_func) as clone: gr.HTML(INTRO) with gr.Row(): with gr.Column(scale=1): inp = gr.Textbox(label="Text", info="What do you want Vokan to say? | Longform generation may produce artifacts in between sentences", interactive=True) voice = gr.Audio(label="Voice", interactive=True, type='filepath', max_length=1000, waveform_options={'waveform_progress_color': '#FF593E'}) steps = gr.Slider(minimum=3, maximum=500, value=20, step=1, label="Diffusion Steps", info="Higher produces better results typically", interactive=True) embscale = gr.Slider(minimum=0.1, maximum=5, value=2, step=0.1, label="Embedding Scale", info="Defaults to 2 | high scales may produce unexpected results | Higher scales produce more emotion guided reults", interactive=True) alpha = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Alpha", info="Defaults to 0.3 | Lower = More similar in sound to speaker", interactive=True) beta = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Beta", info="Defaults to 0.7 | Lower = More similar prosody at cost of stability", interactive=True) speed = gr.Slider(minimum=0.5, maximum=1.5, value=1, step=0.1, label="Speed of speech", info="Defaults to 1", interactive=True) with gr.Column(scale=1): clbtn = gr.Button("Synthesize", variant="primary") claudio = gr.Audio(interactive=False, label="Synthesized Audio", waveform_options={'waveform_progress_color': '#FF593E'}) clbtn.click(generate, inputs=[voice, inp, speed, alpha, beta, embscale, steps], outputs=[claudio], concurrency_limit=15) gr.Examples(examples=examples, inputs=[voice, inp, speed, alpha, beta, embscale, steps], outputs=[claudio], fn=generate, cache_examples=True,) if __name__ == "__main__": # demo.queue(api_open=False, max_size=15).launch(show_api=False) clone.queue(api_open=False, max_size=15).launch(show_api=False)