import gradio as gr
import spaces
from styletts2 import tts
import re
import numpy as np
from scipy.io.wavfile import write
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize
import torch
import phonemizer # en-us
INTRO = """
A StyleTTS2 fine-tune, designed for expressiveness.
"""
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
examples = [
["./Examples/David Attenborough.wav",
"An understanding of the natural world is a source of not only great curiosity, but great fulfilment.",
1, 0.2, 0.5, 1, 200],
["./Examples/Linus Tech Tips.wav",
"sometimes I get so in the zone while building a computer it's like an out of body experience.",
1, 0.2, 0.8, 2, 200],
["./Examples/Melina.wav",
"If you intend to claim the Frenzied Flame, I ask that you cease. It is not to be meddled with. It is chaos, "
"devouring life and thought unending. However ruined this world has become, "
"however mired in torment and despair, life endures.",
0.95, 0.2, 0.5, 2, 200],
["./Examples/Patrick Bateman.wav",
"My Pain Is Constant And Sharp, And I Do Not Wish For A Better World For Anyone.",
1, 0.1, 0.3, 2, 200],
["./Examples/Furina.ogg",
"That's more like it! As expected, my dazzling side comes through in any situation.",
1, 0.2, 0.8, 2, 200]
]
theme = gr.themes.Soft(
primary_hue=gr.themes.Color(c100="#ffd7d1", c200="#ff593e", c300="#ff593e", c400="#ff593e", c50="#fff0f0",
c500="#ff593e", c600="#ea580c", c700="#c2410c", c800="#9a3412", c900="#7c2d12",
c950="#6c2e12"),
secondary_hue="orange",
radius_size=gr.themes.Size(lg="20px", md="8px", sm="6px", xl="30px", xs="4px", xxl="40px", xxs="2px"),
font=[gr.themes.GoogleFont('M PLUS Rounded 1c'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
).set(
block_background_fill='*neutral_50'
)
# eventually swap to something else
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us',
preserve_punctuation=True,
with_stress=True,
language_switch="remove-flags",
tie=False)
def split_and_recombine_text(text, desired_length=200, max_length=300):
"""Split text it into chunks of a desired length trying to keep sentences intact."""
# normalize text, remove redundant whitespace and convert non-ascii quotes to ascii
text = re.sub(r'\n\n+', '\n', text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'[“”]', '"', text)
rv = []
in_quote = False
current = ""
split_pos = []
pos = -1
end_pos = len(text) - 1
def seek(delta):
nonlocal pos, in_quote, current
is_neg = delta < 0
for _ in range(abs(delta)):
if is_neg:
pos -= 1
current = current[:-1]
else:
pos += 1
current += text[pos]
if text[pos] == '"':
in_quote = not in_quote
return text[pos]
def peek(delta):
p = pos + delta
return text[p] if p < end_pos and p >= 0 else ""
def commit():
nonlocal rv, current, split_pos
rv.append(current)
current = ""
split_pos = []
while pos < end_pos:
c = seek(1)
# do we need to force a split?
if len(current) >= max_length:
if len(split_pos) > 0 and len(current) > (desired_length / 2):
# we have at least one sentence and we are over half the desired length, seek back to the last split
d = pos - split_pos[-1]
seek(-d)
else:
# no full sentences, seek back until we are not in the middle of a word and split there
while c not in '!?.\n ' and pos > 0 and len(current) > desired_length:
c = seek(-1)
commit()
# check for sentence boundaries
elif not in_quote and (c in '!?\n' or (c == '.' and peek(1) in '\n ')):
# seek forward if we have consecutive boundary markers but still within the max length
while pos < len(text) - 1 and len(current) < max_length and peek(1) in '!?.':
c = seek(1)
split_pos.append(pos)
if len(current) >= desired_length:
commit()
# treat end of quote as a boundary if its followed by a space or newline
elif in_quote and peek(1) == '"' and peek(2) in '\n ':
seek(2)
split_pos.append(pos)
rv.append(current)
# clean up, remove lines with only whitespace or punctuation
rv = [s.strip() for s in rv]
rv = [s for s in rv if len(s) > 0 and not re.match(r'^[\s\.,;:!?]*$', s)]
return rv
def text_to_phonemes(text):
text = text.strip()
print("Text before phonemization: ", text)
ps = global_phonemizer.phonemize([text])
print("Text after phonemization: ", ps)
ps = word_tokenize(ps[0])
ps = ' '.join(ps)
print("Final text after tokenization: ", ps)
return ps
@spaces.GPU
def generate(audio_path, ins, speed, alpha, beta, embedding, steps=200):
ref_s = other_tts.compute_style(audio_path)
print(ref_s.size())
s_prev = None
texts = split_and_recombine_text(ins)
audio = np.array([])
for i in texts:
i = text_to_phonemes(i)
synthaud, s_prev = other_tts.long_inference_segment(i, diffusion_steps=steps,
alpha=alpha, beta=beta, is_phonemes=True,
embedding_scale=embedding, prev_s=s_prev, ref_s=ref_s,
speed=speed, t=0.8)
# S-Curve
np_log_99 = np.log(99)
def s_curve(p):
assert 0 <= p and p <= 1, p
if p == 0 or p == 1:
return p
p = (2*p - 1) * np_log_99
s = 1 / (1 + np.exp(-p))
s = (s - 0.01) * 50 / 49
assert 0 <= s and s <= 1, s
return s
# Post-Processing
thresh = np.percentile(np.abs(synthaud), 95)
CUT_SAMPLES = 20000 # max samples to cut, in practice only 4-6k are actually cut
lead_percent = 0.008
trail_percent = 0.009
# Leading artefact removal
left = CUT_SAMPLES + int(len(synthaud) * lead_percent)
for j in range(left):
if abs(synthaud[j]) > thresh:
left = j
break
left = max(0, min(left - int(len(synthaud) * lead_percent), CUT_SAMPLES))
synthaud[:left] = 0
for k in range(int(len(synthaud) * lead_percent)):
s = s_curve(k / int(len(synthaud) * lead_percent))
synthaud[k + left] *= s
# Trailing artefact removal
right = len(synthaud) - CUT_SAMPLES - int(len(synthaud) * trail_percent)
for j in range(len(synthaud) - 1, right, -1):
if abs(synthaud[j]) > thresh:
right = j
break
right = min(len(synthaud), max(right + int(len(synthaud) * trail_percent), len(synthaud) - CUT_SAMPLES))
synthaud[right:] = 0
for k in range(int(len(synthaud) * trail_percent)):
s = s_curve(k / int(len(synthaud) * trail_percent))
synthaud[right - int(len(synthaud) * trail_percent) + k] *= (1 - s)
audio = np.concatenate((audio, synthaud))
scaled = np.int16(audio / np.max(np.abs(audio)) * 32767)
return 24000, scaled
other_tts = tts.StyleTTS2(model_checkpoint_path='./epoch_2nd_00012.pth', config_path="models/config_ft.yml")
if torch.cuda.is_available():
other_tts.device = "cuda"
else:
other_tts.device = "cpu"
with gr.Blocks(theme=theme, js=js_func) as clone:
gr.HTML(INTRO)
with gr.Row():
with gr.Column(scale=1):
inp = gr.Textbox(label="Text", info="What do you want Vokan to say? | Longform generation may produce artifacts in between sentences", interactive=True)
voice = gr.Audio(label="Voice", interactive=True, type='filepath', max_length=1000,
waveform_options={'waveform_progress_color': '#FF593E'})
steps = gr.Slider(minimum=3, maximum=500, value=20, step=1, label="Diffusion Steps",
info="Higher produces better results typically", interactive=True)
embscale = gr.Slider(minimum=0.1, maximum=5, value=2, step=0.1, label="Embedding Scale",
info="Defaults to 2 | high scales may produce unexpected results | Higher scales produce more emotion guided reults", interactive=True)
alpha = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Alpha", info="Defaults to 0.3 | Lower = More similar in sound to speaker",
interactive=True)
beta = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Beta", info="Defaults to 0.7 | Lower = More similar prosody at cost of stability",
interactive=True)
speed = gr.Slider(minimum=0.5, maximum=1.5, value=1, step=0.1, label="Speed of speech",
info="Defaults to 1", interactive=True)
with gr.Column(scale=1):
clbtn = gr.Button("Synthesize", variant="primary")
claudio = gr.Audio(interactive=False, label="Synthesized Audio",
waveform_options={'waveform_progress_color': '#FF593E'})
clbtn.click(generate, inputs=[voice, inp, speed, alpha, beta, embscale, steps], outputs=[claudio],
concurrency_limit=15)
gr.Examples(examples=examples,
inputs=[voice, inp, speed, alpha, beta, embscale, steps],
outputs=[claudio],
fn=generate,
cache_examples=True,)
if __name__ == "__main__":
# demo.queue(api_open=False, max_size=15).launch(show_api=False)
clone.queue(api_open=False, max_size=15).launch(show_api=False)