|
import gradio as gr |
|
from llama_cpp import Llama |
|
from huggingface_hub import hf_hub_download |
|
|
|
hf_hub_download(repo_id="LLukas22/gpt4all-lora-quantized-ggjt", filename="ggjt-model.bin", local_dir=".") |
|
|
|
llm = Llama(model_path="./ggjt-model.bin", n_threads=2) |
|
|
|
def chat(input): |
|
resp = llm(input) |
|
return resp['choices'][0]['text'] |
|
|
|
|
|
g = gr.Interface(fn=chat, inputs="text", outputs="text", title="GPT4ALL", description="gpt4all: an ecosystem of open-source chatbots trained on a massive collections of clean assistant data including code, stories and dialogue") |
|
g.queue(concurrency_count=1) |
|
g.launch() |