Shreemit commited on
Commit
8911197
·
1 Parent(s): 76b0ac8

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -7
app.py CHANGED
@@ -14,12 +14,18 @@ def cosine_similarity(x,y):
14
 
15
 
16
  # Function to Load Glove Embeddings
17
- def load_glove_embeddings(glove_path="Data/embeddings.pkl"):
18
 
19
- with open(glove_path,"rb") as f:
20
- embeddings_dict = pickle.load(f)
21
-
22
- return embeddings_dict
 
 
 
 
 
 
 
23
 
24
  # Get Averaged Glove Embedding of a sentence
25
  def averaged_glove_embeddings(sentence, embeddings_dict):
@@ -33,8 +39,7 @@ def averaged_glove_embeddings(sentence, embeddings_dict):
33
 
34
  return glove_embedding/max(count_words,1)
35
 
36
- # Load glove embeddings
37
- glove_embeddings = load_glove_embeddings()
38
 
39
  # Gold standard words to search from
40
  gold_words = ["flower","mountain","tree","car","building"]
@@ -45,6 +50,8 @@ st.title("Search Based Retrieval Demo")
45
  st.subheader("Pass in an input word or even a sentence (e.g. jasmine or mount adams)")
46
  text_search = st.text_input("", value="")
47
 
 
 
48
 
49
  # Find closest word to an input word
50
  if text_search:
 
14
 
15
 
16
  # Function to Load Glove Embeddings
 
17
 
18
+ def load_glove_embeddings(file):
19
+ print("Loading Glove Model")
20
+ glove_model = {}
21
+ with open(file, 'r', encoding='utf-8') as f:
22
+ for line in f:
23
+ values = line.split()
24
+ word = values[0]
25
+ vector = np.asarray(values[1:], dtype='float32')
26
+ glove_model[word] = vector
27
+ print("Loaded {} words".format(len(glove_model)))
28
+ return glove_model
29
 
30
  # Get Averaged Glove Embedding of a sentence
31
  def averaged_glove_embeddings(sentence, embeddings_dict):
 
39
 
40
  return glove_embedding/max(count_words,1)
41
 
42
+
 
43
 
44
  # Gold standard words to search from
45
  gold_words = ["flower","mountain","tree","car","building"]
 
50
  st.subheader("Pass in an input word or even a sentence (e.g. jasmine or mount adams)")
51
  text_search = st.text_input("", value="")
52
 
53
+ # Load glove embeddings
54
+ glove_embeddings = load_glove_embeddings('glove.6B.50d.txt')
55
 
56
  # Find closest word to an input word
57
  if text_search: