Spaces:
Sleeping
Sleeping
Shrek29
commited on
Commit
·
ba61270
1
Parent(s):
8457ed3
Added: APP.py
Browse files- Nuisance_Complaints.csv +0 -0
- app.py +224 -0
- requirements.txt +76 -0
Nuisance_Complaints.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
import folium
|
7 |
+
from folium.plugins import HeatMap
|
8 |
+
from streamlit_folium import st_folium
|
9 |
+
import plotly.express as px
|
10 |
+
from datetime import datetime
|
11 |
+
|
12 |
+
# Set page config
|
13 |
+
st.set_page_config(page_title="Nuisance Complaints Dashboard", layout="wide")
|
14 |
+
|
15 |
+
# Title and introduction
|
16 |
+
st.title("Nuisance Complaints Analysis Dashboard")
|
17 |
+
st.markdown("""
|
18 |
+
**Team Members:**
|
19 |
+
* Lu Chang ([email protected])
|
20 |
+
* Qiming Li ([email protected])
|
21 |
+
* Ruchita Alate ([email protected])
|
22 |
+
* Shreyas Kulkarni ([email protected])
|
23 |
+
* Vishal Devulapalli ([email protected])
|
24 |
+
""")
|
25 |
+
st.write("This dashboard analyzes nuisance complaints data from the City of Urbana.")
|
26 |
+
|
27 |
+
# Load and clean data
|
28 |
+
@st.cache_data
|
29 |
+
def load_and_clean_data():
|
30 |
+
try:
|
31 |
+
# Load data
|
32 |
+
data = pd.read_csv('Nuisance_Complaints.csv')
|
33 |
+
|
34 |
+
# Drop rows with missing 'File Number'
|
35 |
+
data = data.dropna(subset=['File Number'])
|
36 |
+
|
37 |
+
# Convert dates and handle date-related columns
|
38 |
+
data['Date Reported'] = pd.to_datetime(data['Date Reported'])
|
39 |
+
data['Date Notice Mailed or Given'] = pd.to_datetime(data['Date Notice Mailed or Given'])
|
40 |
+
data['File Close Date'] = pd.to_datetime(data['File Close Date'], errors='coerce')
|
41 |
+
|
42 |
+
# Handle 'Date Notice Mailed or Given'
|
43 |
+
median_delay = (data['Date Notice Mailed or Given'] - data['Date Reported']).dt.days.median()
|
44 |
+
data.loc[data['Date Notice Mailed or Given'].isna(), 'Date Notice Mailed or Given'] = \
|
45 |
+
data.loc[data['Date Notice Mailed or Given'].isna(), 'Date Reported'] + pd.Timedelta(days=median_delay)
|
46 |
+
|
47 |
+
# Handle 'Type of Complaint'
|
48 |
+
data['Type of Complaint'] = data['Type of Complaint'].fillna('Unknown')
|
49 |
+
|
50 |
+
# Handle 'Disposition'
|
51 |
+
most_common_disposition = data.groupby('Type of Complaint')['Disposition'].agg(
|
52 |
+
lambda x: x.mode().iloc[0] if len(x.mode()) > 0 else 'Pending'
|
53 |
+
)
|
54 |
+
data['Disposition'] = data.apply(
|
55 |
+
lambda row: most_common_disposition[row['Type of Complaint']]
|
56 |
+
if pd.isna(row['Disposition']) else row['Disposition'],
|
57 |
+
axis=1
|
58 |
+
)
|
59 |
+
|
60 |
+
# Calculate processing time for resolved cases
|
61 |
+
data['Processing Time'] = np.where(
|
62 |
+
data['File Close Date'].notna(),
|
63 |
+
(data['File Close Date'] - data['Date Reported']).dt.days,
|
64 |
+
np.nan
|
65 |
+
)
|
66 |
+
|
67 |
+
# Handle 'Method Submitted'
|
68 |
+
data.loc[
|
69 |
+
(data['Submitted Online?']) & (data['Method Submitted'].isna()),
|
70 |
+
'Method Submitted'
|
71 |
+
] = 'Online'
|
72 |
+
data['Method Submitted'] = data['Method Submitted'].fillna(data['Method Submitted'].mode()[0])
|
73 |
+
|
74 |
+
# Drop rows with missing critical values
|
75 |
+
data = data.dropna(subset=['Submitted Online?', 'Mapped Location'])
|
76 |
+
|
77 |
+
# Extract and clean location data
|
78 |
+
data['Latitude'] = data['Mapped Location'].str.extract(r'\(([^,]+),')[0].astype(float)
|
79 |
+
data['Longitude'] = data['Mapped Location'].str.extract(r', ([^,]+)\)')[0].astype(float)
|
80 |
+
|
81 |
+
# Ensure Year Reported is integer
|
82 |
+
data['Year Reported'] = data['Year Reported'].astype(int)
|
83 |
+
|
84 |
+
return data
|
85 |
+
|
86 |
+
except Exception as e:
|
87 |
+
st.error(f"Error in data preprocessing: {str(e)}")
|
88 |
+
raise e
|
89 |
+
|
90 |
+
# Load the data
|
91 |
+
try:
|
92 |
+
data = load_and_clean_data()
|
93 |
+
st.success("Data successfully loaded and cleaned!")
|
94 |
+
except Exception as e:
|
95 |
+
st.error(f"Error loading data: {str(e)}")
|
96 |
+
st.stop()
|
97 |
+
|
98 |
+
# Create sidebar
|
99 |
+
|
100 |
+
st.sidebar.header("Dashboard Controls")
|
101 |
+
|
102 |
+
# Get unique years and convert to list for selectbox
|
103 |
+
year_list = sorted(data['Year Reported'].unique().tolist())
|
104 |
+
year_options = ['All Time'] + [int(year) for year in year_list] # Convert years to integers
|
105 |
+
|
106 |
+
selected_year = st.sidebar.selectbox(
|
107 |
+
"Select Year",
|
108 |
+
options=year_options,
|
109 |
+
)
|
110 |
+
# Add visualization type selector
|
111 |
+
viz_type = st.sidebar.selectbox(
|
112 |
+
"Select Visualization",
|
113 |
+
["Complaint Types", "Geographic Distribution", "Resolution Status",
|
114 |
+
"Submission Methods", "Complaints by Disposition"]
|
115 |
+
)
|
116 |
+
|
117 |
+
|
118 |
+
# Filter data based on selected year
|
119 |
+
if selected_year == 'All Time':
|
120 |
+
filtered_data = data # Use complete dataset when 'All Time' is selected
|
121 |
+
else:
|
122 |
+
filtered_data = data[data['Year Reported'] == selected_year]
|
123 |
+
|
124 |
+
# Update header text
|
125 |
+
if selected_year == 'All Time':
|
126 |
+
st.header("Analysis for All Time")
|
127 |
+
else:
|
128 |
+
st.header(f"Analysis for Year {selected_year}")
|
129 |
+
# Main content
|
130 |
+
|
131 |
+
# Create metrics
|
132 |
+
# Create metrics
|
133 |
+
# Create metrics
|
134 |
+
# Create metrics
|
135 |
+
# Create metrics
|
136 |
+
col1, col2, col3 = st.columns(3)
|
137 |
+
with col1:
|
138 |
+
st.metric("Total Complaints", len(filtered_data))
|
139 |
+
with col2:
|
140 |
+
avg_time = filtered_data['Processing Time'].mean()
|
141 |
+
st.metric("Average Processing Time", f"{avg_time:.1f} days" if pd.notna(avg_time) else "N/A")
|
142 |
+
with col3:
|
143 |
+
if not filtered_data.empty:
|
144 |
+
most_common = filtered_data['Type of Complaint'].value_counts().index[0]
|
145 |
+
st.metric("Most Common Type", most_common)
|
146 |
+
else:
|
147 |
+
st.metric("Most Common Type", "N/A")
|
148 |
+
if viz_type == "Complaint Types":
|
149 |
+
# Interactive Pie Chart
|
150 |
+
st.subheader("Interactive Complaint Types Pie Chart")
|
151 |
+
complaint_counts = filtered_data['Type of Complaint'].value_counts().reset_index()
|
152 |
+
complaint_counts.columns = ['Complaint Type', 'Count']
|
153 |
+
|
154 |
+
fig = px.pie(
|
155 |
+
complaint_counts,
|
156 |
+
names='Complaint Type',
|
157 |
+
values='Count',
|
158 |
+
title=f'Complaint Types Distribution in {selected_year}',
|
159 |
+
hole=0.4 # Donut style
|
160 |
+
)
|
161 |
+
fig.update_traces(textinfo='percent+label')
|
162 |
+
st.plotly_chart(fig, use_container_width=True)
|
163 |
+
|
164 |
+
elif viz_type == "Geographic Distribution":
|
165 |
+
# Clustered Heatmap
|
166 |
+
st.subheader("Clustered Heatmap of Complaints")
|
167 |
+
map_center = [filtered_data['Latitude'].mean(), filtered_data['Longitude'].mean()]
|
168 |
+
m = folium.Map(location=map_center, zoom_start=12)
|
169 |
+
|
170 |
+
heat_data = filtered_data[['Latitude', 'Longitude']].dropna().values.tolist()
|
171 |
+
HeatMap(heat_data).add_to(m)
|
172 |
+
|
173 |
+
st_data = st_folium(m, width=700, height=500)
|
174 |
+
|
175 |
+
|
176 |
+
elif viz_type == "Resolution Status":
|
177 |
+
st.subheader("Complaint Resolution Status")
|
178 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
179 |
+
resolution_counts = filtered_data['Disposition'].value_counts()
|
180 |
+
sns.barplot(x=resolution_counts.values, y=resolution_counts.index)
|
181 |
+
plt.title(f'Resolution Status Distribution in {selected_year}')
|
182 |
+
st.pyplot(fig)
|
183 |
+
|
184 |
+
elif viz_type == "Submission Methods":
|
185 |
+
st.subheader("Submission Methods Analysis")
|
186 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
187 |
+
submission_counts = filtered_data['Method Submitted'].value_counts()
|
188 |
+
sns.barplot(x=submission_counts.values, y=submission_counts.index)
|
189 |
+
plt.title(f'Submission Methods in {selected_year}')
|
190 |
+
st.pyplot(fig)
|
191 |
+
|
192 |
+
|
193 |
+
elif viz_type == "Complaints by Disposition":
|
194 |
+
st.subheader("Complaints by Disposition")
|
195 |
+
disposition_counts = filtered_data['Disposition'].value_counts()
|
196 |
+
|
197 |
+
if not disposition_counts.empty:
|
198 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
199 |
+
sns.barplot(x=disposition_counts.values, y=disposition_counts.index, palette="viridis", ax=ax)
|
200 |
+
ax.set_title(f'Complaints by Disposition in {selected_year}', fontsize=14)
|
201 |
+
ax.set_xlabel('Number of Complaints', fontsize=12)
|
202 |
+
ax.set_ylabel('Disposition', fontsize=12)
|
203 |
+
st.pyplot(fig)
|
204 |
+
else:
|
205 |
+
st.write("No data available for the selected year.")
|
206 |
+
|
207 |
+
# Additional insights
|
208 |
+
st.header("Key Insights")
|
209 |
+
col1, col2 = st.columns(2)
|
210 |
+
|
211 |
+
with col1:
|
212 |
+
st.subheader("Top 3 Complaint Types")
|
213 |
+
top_complaints = filtered_data['Type of Complaint'].value_counts().head(3)
|
214 |
+
st.write(top_complaints)
|
215 |
+
|
216 |
+
with col2:
|
217 |
+
st.subheader("Resolution Efficiency")
|
218 |
+
resolution_rate = (filtered_data['Disposition'].value_counts() /
|
219 |
+
len(filtered_data) * 100).round(2)
|
220 |
+
st.write(resolution_rate)
|
221 |
+
|
222 |
+
# Footer
|
223 |
+
st.markdown("---")
|
224 |
+
st.markdown("Dataset provided by the City of Urbana Open Data Portal")
|
requirements.txt
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
altair==5.5.0
|
2 |
+
asttokens==3.0.0
|
3 |
+
attrs==24.2.0
|
4 |
+
blinker==1.9.0
|
5 |
+
branca==0.8.0
|
6 |
+
cachetools==5.5.0
|
7 |
+
certifi==2024.8.30
|
8 |
+
charset-normalizer==3.4.0
|
9 |
+
click==8.1.7
|
10 |
+
comm==0.2.2
|
11 |
+
contourpy==1.3.1
|
12 |
+
cycler==0.12.1
|
13 |
+
debugpy==1.8.9
|
14 |
+
decorator==5.1.1
|
15 |
+
executing==2.1.0
|
16 |
+
folium==0.18.0
|
17 |
+
fonttools==4.55.1
|
18 |
+
gitdb==4.0.11
|
19 |
+
GitPython==3.1.43
|
20 |
+
idna==3.10
|
21 |
+
ipykernel==6.29.5
|
22 |
+
ipython==8.30.0
|
23 |
+
jedi==0.19.2
|
24 |
+
Jinja2==3.1.4
|
25 |
+
jsonschema==4.23.0
|
26 |
+
jsonschema-specifications==2024.10.1
|
27 |
+
jupyter_client==8.6.3
|
28 |
+
jupyter_core==5.7.2
|
29 |
+
kiwisolver==1.4.7
|
30 |
+
markdown-it-py==3.0.0
|
31 |
+
MarkupSafe==3.0.2
|
32 |
+
matplotlib==3.9.3
|
33 |
+
matplotlib-inline==0.1.7
|
34 |
+
mdurl==0.1.2
|
35 |
+
narwhals==1.15.2
|
36 |
+
nest-asyncio==1.6.0
|
37 |
+
numpy==2.1.3
|
38 |
+
packaging==24.2
|
39 |
+
pandas==2.2.3
|
40 |
+
parso==0.8.4
|
41 |
+
pexpect==4.9.0
|
42 |
+
pillow==11.0.0
|
43 |
+
platformdirs==4.3.6
|
44 |
+
plotly==5.24.1
|
45 |
+
prompt_toolkit==3.0.48
|
46 |
+
protobuf==5.29.1
|
47 |
+
psutil==6.1.0
|
48 |
+
ptyprocess==0.7.0
|
49 |
+
pure_eval==0.2.3
|
50 |
+
pyarrow==18.1.0
|
51 |
+
pydeck==0.9.1
|
52 |
+
Pygments==2.18.0
|
53 |
+
pyparsing==3.2.0
|
54 |
+
python-dateutil==2.9.0.post0
|
55 |
+
pytz==2024.2
|
56 |
+
pyzmq==26.2.0
|
57 |
+
referencing==0.35.1
|
58 |
+
requests==2.32.3
|
59 |
+
rich==13.9.4
|
60 |
+
rpds-py==0.22.3
|
61 |
+
seaborn==0.13.2
|
62 |
+
six==1.17.0
|
63 |
+
smmap==5.0.1
|
64 |
+
stack-data==0.6.3
|
65 |
+
streamlit==1.40.2
|
66 |
+
streamlit_folium==0.23.2
|
67 |
+
tenacity==9.0.0
|
68 |
+
toml==0.10.2
|
69 |
+
tornado==6.4.2
|
70 |
+
traitlets==5.14.3
|
71 |
+
typing_extensions==4.12.2
|
72 |
+
tzdata==2024.2
|
73 |
+
urllib3==2.2.3
|
74 |
+
watchdog==6.0.0
|
75 |
+
wcwidth==0.2.13
|
76 |
+
xyzservices==2024.9.0
|