ShreyMehra
Update app.py
60209ac unverified
raw
history blame
1.55 kB
import streamlit as st #Web App
from PIL import Image #Image Processing
import numpy as np #Image Processing
from transformers import AutoProcessor, Blip2ForConditionalGeneration
import torch
#title
st.title("Image Captioner - Caption the images")
st.markdown("Link to the model - [Image-to-Caption-App on πŸ€— Spaces](https://huggingface.co/spaces/Shrey23/Image-Captioning)")
#image uploader
image = st.file_uploader(label = "Upload your image here",type=['png','jpg','jpeg'])
@st.cache
def load_model():
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained("Shrey23/Image-Captioning", device_map="auto", load_in_8bit=True)
return processor, model
processor, model = load_model() #load model
if image is not None:
input_image = Image.open(image) #read image
st.image(input_image) #display image
with st.spinner("πŸ€– AI is at Work! "):
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
pixel_values = inputs.pixel_values
generated_ids = model.generate(pixel_values=pixel_values, max_length=25)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
st.write(generated_caption)
st.success("Here you go!")
st.balloons()
else:
st.write("Upload an Image")
st.caption("Made with ❀️ by @1littlecoder. Credits to πŸ€— Spaces for Hosting this ")