import streamlit as st import random import requests import io from PIL import Image from transformers import AutoProcessor, Blip2ForConditionalGeneration from peft import PeftModel, PeftConfig import torch model = None processor = None st.title("Image Captioner - Caption the images") st.markdown("Link to the model - [Image-to-Caption-App on 🤗 Spaces](https://huggingface.co/spaces/Shrey23/Image-Captioning)") class UI: def __init__(self): model = Model() model.load_model() def displayUI(self): image = st.file_uploader(label = "Upload your image here",type=['png','jpg','jpeg']) if image is not None: input_image = Image.open(image) #read image st.image(input_image) #display image with st.spinner("🤖 AI is at Work! "): device = "cuda" if torch.cuda.is_available() else "cpu" inputs = processor(images=image, return_tensors="pt").to(device, torch.float16) pixel_values = inputs.pixel_values generated_ids = model.generate(pixel_values=pixel_values, max_length=25) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] st.write(generated_caption) st.success("Here you go!") st.balloons() else: st.write("Upload an Image") st.caption("Made with ❤️ by @1littlecoder. Credits to 🤗 Spaces for Hosting this ") class Model: def load_model(self): peft_model_id = "Shrey23/Image-Captioning" config = PeftConfig.from_pretrained(peft_model_id) global model global processor model = Blip2ForConditionalGeneration.from_pretrained(config.base_model_name_or_path, torch_dtype=torch.float16) #, device_map="auto", load_in_8bit=True model = PeftModel.from_pretrained(model, peft_model_id) processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") def query(self , payload): response = requests.post(self.API_URL, headers=self.headers, json=payload) return response.content def generate_response(self, prompt): image_bytes = self.query({ "inputs": prompt, }) return io.BytesIO(image_bytes) def main(): ui = UI() ui.displayUI() if __name__ == "__main__": main()