Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
from transformers import
|
4 |
-
# from transformers import T5Tokenizer, T5ForConditionalGeneration
|
5 |
# from transformers import BartTokenizer, BartForConditionalGeneration
|
6 |
# from transformers import AutoTokenizer, EncoderDecoderModel
|
7 |
#from transformers import AutoTokenizer, LEDForConditionalGeneration
|
@@ -17,21 +16,21 @@ Kathmandu, Nepal's capital, is set in a valley surrounded by the Himalayan mount
|
|
17 |
##initializing models
|
18 |
|
19 |
#Transformers Approach
|
20 |
-
def transform_summarize(text):
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
|
25 |
#T5
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
#BART
|
37 |
# def bart_summarize(text):
|
@@ -55,8 +54,8 @@ def transform_summarize(text):
|
|
55 |
# return generated_text
|
56 |
|
57 |
#st.write("Generated Summaries are: ")
|
58 |
-
l=transform_summarize(text)
|
|
|
59 |
st.write(l)
|
60 |
-
# print(t5_summarize(text))
|
61 |
# print(bart_summarize(text))
|
62 |
# print(encoder_decoder(text))
|
|
|
1 |
import streamlit as st
|
2 |
+
#from transformers import pipeline
|
3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
|
4 |
# from transformers import BartTokenizer, BartForConditionalGeneration
|
5 |
# from transformers import AutoTokenizer, EncoderDecoderModel
|
6 |
#from transformers import AutoTokenizer, LEDForConditionalGeneration
|
|
|
16 |
##initializing models
|
17 |
|
18 |
#Transformers Approach
|
19 |
+
# def transform_summarize(text):
|
20 |
+
# summary = pipeline("summarization")
|
21 |
+
# k=summary(text,max_length=100,do_sample=False)
|
22 |
+
# return k
|
23 |
|
24 |
#T5
|
25 |
+
def t5_summarize(text):
|
26 |
+
tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
27 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
28 |
+
|
29 |
+
input_text = "summarize: " + text
|
30 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=1024, truncation=True)
|
31 |
+
outputs = model.generate(inputs, max_length=200, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)
|
32 |
+
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
33 |
+
return summary
|
34 |
|
35 |
#BART
|
36 |
# def bart_summarize(text):
|
|
|
54 |
# return generated_text
|
55 |
|
56 |
#st.write("Generated Summaries are: ")
|
57 |
+
# l=transform_summarize(text)
|
58 |
+
l=t5_summarize(text)
|
59 |
st.write(l)
|
|
|
60 |
# print(bart_summarize(text))
|
61 |
# print(encoder_decoder(text))
|