ShreyaRao commited on
Commit
ea24c96
β€’
1 Parent(s): 39dd247

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -17
app.py CHANGED
@@ -4,7 +4,7 @@ import time
4
  from transformers import pipeline
5
  from transformers import T5Tokenizer, T5ForConditionalGeneration
6
  from transformers import BartTokenizer, BartForConditionalGeneration
7
- from transformers import AutoTokenizer, EncoderDecoderModel
8
  #from transformers import AutoTokenizer, LEDForConditionalGeneration
9
  #from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
10
 
@@ -38,15 +38,15 @@ def bart_summarize(text):
38
  return pp
39
 
40
  #Encoder-Decoder
41
- def encoder_decoder(text):
42
- model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
43
- tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
44
- # let's perform inference on a long piece of text
45
- input_ids = tokenizer(text, return_tensors="pt").input_ids
46
- # autoregressively generate summary (uses greedy decoding by default)
47
- generated_ids = model.generate(input_ids)
48
- generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
49
- return generated_text
50
 
51
  # Result
52
  def result(summary):
@@ -90,13 +90,13 @@ if button:
90
  result(summary)
91
  except Exception:
92
  st.warning("🚨 Your input text is quite lengthy. For better results, consider providing a shorter text or breaking it into smaller chunks.")
93
- elif model == "Encoder-Decoder":
94
- st.write("You have selected Encoder-Decoder model.")
95
- try:
96
- summary = encoder_decoder(text)
97
- result(summary)
98
- except Exception:
99
- st.warning("🚨 Your input text is quite lengthy. For better results, consider providing a shorter text or breaking it into smaller chunks.")
100
 
101
  #st.toast("Please wait while we summarize your text.")
102
  #with st.spinner("Summarizing..."):
 
4
  from transformers import pipeline
5
  from transformers import T5Tokenizer, T5ForConditionalGeneration
6
  from transformers import BartTokenizer, BartForConditionalGeneration
7
+ #from transformers import AutoTokenizer, EncoderDecoderModel
8
  #from transformers import AutoTokenizer, LEDForConditionalGeneration
9
  #from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
10
 
 
38
  return pp
39
 
40
  #Encoder-Decoder
41
+ # def encoder_decoder(text):
42
+ # model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
43
+ # tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
44
+ # # let's perform inference on a long piece of text
45
+ # input_ids = tokenizer(text, return_tensors="pt").input_ids
46
+ # # autoregressively generate summary (uses greedy decoding by default)
47
+ # generated_ids = model.generate(input_ids)
48
+ # generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
49
+ # return generated_text
50
 
51
  # Result
52
  def result(summary):
 
90
  result(summary)
91
  except Exception:
92
  st.warning("🚨 Your input text is quite lengthy. For better results, consider providing a shorter text or breaking it into smaller chunks.")
93
+ # elif model == "Encoder-Decoder":
94
+ # st.write("You have selected Encoder-Decoder model.")
95
+ # try:
96
+ # summary = encoder_decoder(text)
97
+ # result(summary)
98
+ # except Exception:
99
+ # st.warning("🚨 Your input text is quite lengthy. For better results, consider providing a shorter text or breaking it into smaller chunks.")
100
 
101
  #st.toast("Please wait while we summarize your text.")
102
  #with st.spinner("Summarizing..."):