File size: 12,296 Bytes
048efbc
 
 
0b607fb
be913ab
048efbc
2594602
 
048efbc
 
 
 
 
 
 
 
2594602
781b94b
28ed44f
048efbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2594602
be913ab
 
a2c0e0e
be913ab
0b607fb
a2c0e0e
 
 
 
 
781b94b
048efbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2c0e0e
 
 
 
790409e
be913ab
 
a2c0e0e
 
048efbc
a2c0e0e
048efbc
 
 
a2c0e0e
048efbc
 
 
 
a2c0e0e
048efbc
 
 
 
 
 
 
 
 
a2c0e0e
048efbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b607fb
2594602
048efbc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from tempfile import NamedTemporaryFile
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_parse import LlamaParse
from langchain_core.documents import Document
from huggingface_hub import InferenceClient
import inspect

# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
CLOUDFLARE_ACCOUNT_ID = os.environ.get("CLOUDFLARE_ACCOUNT_ID")
CLOUDFLARE_AUTH_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")

MODELS = [
    "Qwen/Qwen2-72B-Instruct",
    "google/gemma-2-9b",
    "microsoft/Phi-3-mini-4k-instruct",
    "Qwen/Qwen2-7B-Instruct",
    "mistralai/Mistral-Nemo-Instruct-2407",
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "cloudflare/llama-3.1-8b-instruct"  # Added Cloudflare Llama 3.1 model
]

# Initialize LlamaParse
llama_parser = LlamaParse(
    api_key=llama_cloud_api_key,
    result_type="markdown",
    num_workers=4,
    verbose=True,
    language="en",
)

def load_document(file: NamedTemporaryFile, parser: str = "pypdf") -> List[Document]:
    """Loads and splits the document into pages."""
    if parser == "pypdf":
        loader = PyPDFLoader(file.name)
        return loader.load_and_split()
    elif parser == "llamaparse":
        try:
            documents = llama_parser.load_data(file.name)
            return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
        except Exception as e:
            print(f"Error using Llama Parse: {str(e)}")
            print("Falling back to PyPDF parser")
            loader = PyPDFLoader(file.name)
            return loader.load_and_split()
    else:
        raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")

def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

def update_vectors(files, parser):
    if not files:
        return "Please upload at least one PDF file."
    
    embed = get_embeddings()
    total_chunks = 0
    
    all_data = []
    for file in files:
        data = load_document(file, parser)
        all_data.extend(data)
        total_chunks += len(data)
    
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        database.add_documents(all_data)
    else:
        database = FAISS.from_documents(all_data, embed)
    
    database.save_local("faiss_database")
    
    return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."

def generate_chunked_response(prompt, model, max_tokens=1000, max_chunks=5, temperature=0.7):
    if model == "cloudflare/llama-3.1-8b-instruct":
        return generate_cloudflare_response(prompt, max_tokens, temperature)
    
    client = InferenceClient(
        model,
        token=huggingface_token,
    )
    
    full_response = ""
    messages = [{"role": "user", "content": prompt}]
    
    try:
        for message in client.chat_completion(
            messages=messages,
            max_tokens=max_tokens,
            temperature=temperature,
            stream=True,
        ):
            chunk = message.choices[0].delta.content
            if chunk:
                full_response += chunk
        
    except Exception as e:
        print(f"Error in generating response: {str(e)}")
    
    # Clean up the response
    clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
    clean_response = clean_response.replace("Using the following context:", "").strip()
    clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
    
    return clean_response

def generate_cloudflare_response(prompt, max_tokens, temperature):
    try:
        response = requests.post(
            f"https://api.cloudflare.com/client/v4/accounts/{CLOUDFLARE_ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
            headers={"Authorization": f"Bearer {CLOUDFLARE_AUTH_TOKEN}"},
            json={
                "messages": [
                    {"role": "system", "content": "You are a friendly assistant"},
                    {"role": "user", "content": prompt}
                ],
                "max_tokens": max_tokens,
                "temperature": temperature
            }
        )
        
        # Check if the request was successful
        response.raise_for_status()
        
        result = response.json()
        if not result:
            raise ValueError("Empty response from Cloudflare API")
        
        if 'result' not in result:
            raise ValueError(f"Unexpected response format. 'result' key missing. Response: {result}")
        
        if 'response' not in result['result']:
            raise ValueError(f"Unexpected response format. 'response' key missing. Result: {result['result']}")
        
        return result['result']['response']
    
    except requests.exceptions.RequestException as e:
        error_message = f"Network error when calling Cloudflare API: {str(e)}"
        print(error_message)
        return f"Error: {error_message}"
    except json.JSONDecodeError as e:
        error_message = f"Error decoding JSON response from Cloudflare API: {str(e)}"
        print(error_message)
        return f"Error: {error_message}"
    except ValueError as e:
        error_message = str(e)
        print(error_message)
        return f"Error: {error_message}"
    except Exception as e:
        error_message = f"Unexpected error in generate_cloudflare_response: {str(e)}"
        print(error_message)
        return f"Error: {error_message}"


def duckduckgo_search(query):
    with DDGS() as ddgs:
        results = ddgs.text(query, max_results=5)
    return results

class CitingSources(BaseModel):
    sources: List[str] = Field(
        ...,
        description="List of sources to cite. Should be an URL of the source."
    )

def get_response_from_pdf(query, model, temperature=0.7):
    embed = get_embeddings()
    if os.path.exists("faiss_database"):
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    else:
        return "No documents available. Please upload PDF documents to answer questions."

    retriever = database.as_retriever()
    relevant_docs = retriever.get_relevant_documents(query)
    context_str = "\n".join([doc.page_content for doc in relevant_docs])

    prompt = f"""<s>[INST] Using the following context from the PDF documents:
{context_str}
Write a detailed and complete response that answers the following user question: '{query}'
Do not include a list of sources in your response. [/INST]"""

    generated_text = generate_chunked_response(prompt, model, temperature=temperature)

    # Clean the response
    clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
    clean_text = clean_text.replace("Using the following context from the PDF documents:", "").strip()

    return clean_text

def get_response_with_search(query, model, temperature=0.7):
    search_results = duckduckgo_search(query)
    context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n" 
                        for result in search_results if 'body' in result)
    
    prompt = f"""<s>[INST] Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response. [/INST]"""
    
    generated_text = generate_chunked_response(prompt, model, temperature=temperature)
    
    # Clean the response
    clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
    clean_text = clean_text.replace("Using the following context:", "").strip()
    
    # Split the content and sources
    parts = clean_text.split("Sources:", 1)
    main_content = parts[0].strip()
    sources = parts[1].strip() if len(parts) > 1 else ""
    
    return main_content, sources

def chatbot_interface(message, history, use_web_search, model, temperature):
    if not message.strip():  # Check if the message is empty or just whitespace
        return history

    if use_web_search:
        main_content, sources = get_response_with_search(message, model, temperature)
        formatted_response = f"{main_content}\n\nSources:\n{sources}"
    else:
        response = get_response_from_pdf(message, model, temperature)
        formatted_response = response

    # Check if the last message in history is the same as the current message
    if history and history[-1][0] == message:
        # Replace the last response instead of adding a new one
        history[-1] = (message, formatted_response)
    else:
        # Add the new message-response pair
        history.append((message, formatted_response))

    return history


def clear_and_update_chat(message, history, use_web_search, model, temperature):
    updated_history = chatbot_interface(message, history, use_web_search, model, temperature)
    return "", updated_history  # Return empty string to clear the input

# Gradio interface
with gr.Blocks() as demo:
    
    is_generating = gr.State(False)

    def protected_clear_and_update_chat(message, history, use_web_search, model, temperature, is_generating):
        if is_generating:
            return message, history, is_generating
        is_generating = True
        updated_message, updated_history = clear_and_update_chat(message, history, use_web_search, model, temperature)
        is_generating = False
        return updated_message, updated_history, is_generating
    
    gr.Markdown("# AI-powered Web Search and PDF Chat Assistant")
    
    with gr.Row():
        file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
        parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="pypdf")
        update_button = gr.Button("Upload Document")
    
    update_output = gr.Textbox(label="Update Status")
    update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
    
    chatbot = gr.Chatbot(label="Conversation")
    msg = gr.Textbox(label="Ask a question")
    use_web_search = gr.Checkbox(label="Use Web Search", value=False)
    
    with gr.Row():
        model_dropdown = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2])
        temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
    
    submit = gr.Button("Submit")

    gr.Examples(
        examples=[
            ["What are the latest developments in AI?"],
            ["Tell me about recent updates on GitHub"],
            ["What are the best hotels in Galapagos, Ecuador?"],
            ["Summarize recent advancements in Python programming"],
        ],
        inputs=msg,
    )

    submit.click(protected_clear_and_update_chat, 
                 inputs=[msg, chatbot, use_web_search, model_dropdown, temperature_slider, is_generating], 
                 outputs=[msg, chatbot, is_generating])
    msg.submit(protected_clear_and_update_chat, 
               inputs=[msg, chatbot, use_web_search, model_dropdown, temperature_slider, is_generating], 
               outputs=[msg, chatbot, is_generating])

    gr.Markdown(
    """
    ## How to use
    1. Upload PDF documents using the file input at the top.
    2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
    3. Ask questions in the textbox. 
    4. Toggle "Use Web Search" to switch between PDF chat and web search.
    5. Adjust Temperature and Repetition Penalty sliders to fine-tune the response generation.
    6. Click "Submit" or press Enter to get a response.
    """
    )

if __name__ == "__main__":
    demo.launch(share=True)