Spaces:
Sleeping
Sleeping
File size: 12,296 Bytes
048efbc 0b607fb be913ab 048efbc 2594602 048efbc 2594602 781b94b 28ed44f 048efbc 2594602 be913ab a2c0e0e be913ab 0b607fb a2c0e0e 781b94b 048efbc a2c0e0e 790409e be913ab a2c0e0e 048efbc a2c0e0e 048efbc a2c0e0e 048efbc a2c0e0e 048efbc a2c0e0e 048efbc 0b607fb 2594602 048efbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from tempfile import NamedTemporaryFile
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_parse import LlamaParse
from langchain_core.documents import Document
from huggingface_hub import InferenceClient
import inspect
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
CLOUDFLARE_ACCOUNT_ID = os.environ.get("CLOUDFLARE_ACCOUNT_ID")
CLOUDFLARE_AUTH_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
MODELS = [
"Qwen/Qwen2-72B-Instruct",
"google/gemma-2-9b",
"microsoft/Phi-3-mini-4k-instruct",
"Qwen/Qwen2-7B-Instruct",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"cloudflare/llama-3.1-8b-instruct" # Added Cloudflare Llama 3.1 model
]
# Initialize LlamaParse
llama_parser = LlamaParse(
api_key=llama_cloud_api_key,
result_type="markdown",
num_workers=4,
verbose=True,
language="en",
)
def load_document(file: NamedTemporaryFile, parser: str = "pypdf") -> List[Document]:
"""Loads and splits the document into pages."""
if parser == "pypdf":
loader = PyPDFLoader(file.name)
return loader.load_and_split()
elif parser == "llamaparse":
try:
documents = llama_parser.load_data(file.name)
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
except Exception as e:
print(f"Error using Llama Parse: {str(e)}")
print("Falling back to PyPDF parser")
loader = PyPDFLoader(file.name)
return loader.load_and_split()
else:
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def update_vectors(files, parser):
if not files:
return "Please upload at least one PDF file."
embed = get_embeddings()
total_chunks = 0
all_data = []
for file in files:
data = load_document(file, parser)
all_data.extend(data)
total_chunks += len(data)
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
database.add_documents(all_data)
else:
database = FAISS.from_documents(all_data, embed)
database.save_local("faiss_database")
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
def generate_chunked_response(prompt, model, max_tokens=1000, max_chunks=5, temperature=0.7):
if model == "cloudflare/llama-3.1-8b-instruct":
return generate_cloudflare_response(prompt, max_tokens, temperature)
client = InferenceClient(
model,
token=huggingface_token,
)
full_response = ""
messages = [{"role": "user", "content": prompt}]
try:
for message in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
stream=True,
):
chunk = message.choices[0].delta.content
if chunk:
full_response += chunk
except Exception as e:
print(f"Error in generating response: {str(e)}")
# Clean up the response
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
clean_response = clean_response.replace("Using the following context:", "").strip()
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
return clean_response
def generate_cloudflare_response(prompt, max_tokens, temperature):
try:
response = requests.post(
f"https://api.cloudflare.com/client/v4/accounts/{CLOUDFLARE_ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
headers={"Authorization": f"Bearer {CLOUDFLARE_AUTH_TOKEN}"},
json={
"messages": [
{"role": "system", "content": "You are a friendly assistant"},
{"role": "user", "content": prompt}
],
"max_tokens": max_tokens,
"temperature": temperature
}
)
# Check if the request was successful
response.raise_for_status()
result = response.json()
if not result:
raise ValueError("Empty response from Cloudflare API")
if 'result' not in result:
raise ValueError(f"Unexpected response format. 'result' key missing. Response: {result}")
if 'response' not in result['result']:
raise ValueError(f"Unexpected response format. 'response' key missing. Result: {result['result']}")
return result['result']['response']
except requests.exceptions.RequestException as e:
error_message = f"Network error when calling Cloudflare API: {str(e)}"
print(error_message)
return f"Error: {error_message}"
except json.JSONDecodeError as e:
error_message = f"Error decoding JSON response from Cloudflare API: {str(e)}"
print(error_message)
return f"Error: {error_message}"
except ValueError as e:
error_message = str(e)
print(error_message)
return f"Error: {error_message}"
except Exception as e:
error_message = f"Unexpected error in generate_cloudflare_response: {str(e)}"
print(error_message)
return f"Error: {error_message}"
def duckduckgo_search(query):
with DDGS() as ddgs:
results = ddgs.text(query, max_results=5)
return results
class CitingSources(BaseModel):
sources: List[str] = Field(
...,
description="List of sources to cite. Should be an URL of the source."
)
def get_response_from_pdf(query, model, temperature=0.7):
embed = get_embeddings()
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
else:
return "No documents available. Please upload PDF documents to answer questions."
retriever = database.as_retriever()
relevant_docs = retriever.get_relevant_documents(query)
context_str = "\n".join([doc.page_content for doc in relevant_docs])
prompt = f"""<s>[INST] Using the following context from the PDF documents:
{context_str}
Write a detailed and complete response that answers the following user question: '{query}'
Do not include a list of sources in your response. [/INST]"""
generated_text = generate_chunked_response(prompt, model, temperature=temperature)
# Clean the response
clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
clean_text = clean_text.replace("Using the following context from the PDF documents:", "").strip()
return clean_text
def get_response_with_search(query, model, temperature=0.7):
search_results = duckduckgo_search(query)
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
for result in search_results if 'body' in result)
prompt = f"""<s>[INST] Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response. [/INST]"""
generated_text = generate_chunked_response(prompt, model, temperature=temperature)
# Clean the response
clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
clean_text = clean_text.replace("Using the following context:", "").strip()
# Split the content and sources
parts = clean_text.split("Sources:", 1)
main_content = parts[0].strip()
sources = parts[1].strip() if len(parts) > 1 else ""
return main_content, sources
def chatbot_interface(message, history, use_web_search, model, temperature):
if not message.strip(): # Check if the message is empty or just whitespace
return history
if use_web_search:
main_content, sources = get_response_with_search(message, model, temperature)
formatted_response = f"{main_content}\n\nSources:\n{sources}"
else:
response = get_response_from_pdf(message, model, temperature)
formatted_response = response
# Check if the last message in history is the same as the current message
if history and history[-1][0] == message:
# Replace the last response instead of adding a new one
history[-1] = (message, formatted_response)
else:
# Add the new message-response pair
history.append((message, formatted_response))
return history
def clear_and_update_chat(message, history, use_web_search, model, temperature):
updated_history = chatbot_interface(message, history, use_web_search, model, temperature)
return "", updated_history # Return empty string to clear the input
# Gradio interface
with gr.Blocks() as demo:
is_generating = gr.State(False)
def protected_clear_and_update_chat(message, history, use_web_search, model, temperature, is_generating):
if is_generating:
return message, history, is_generating
is_generating = True
updated_message, updated_history = clear_and_update_chat(message, history, use_web_search, model, temperature)
is_generating = False
return updated_message, updated_history, is_generating
gr.Markdown("# AI-powered Web Search and PDF Chat Assistant")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="pypdf")
update_button = gr.Button("Upload Document")
update_output = gr.Textbox(label="Update Status")
update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
chatbot = gr.Chatbot(label="Conversation")
msg = gr.Textbox(label="Ask a question")
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
with gr.Row():
model_dropdown = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2])
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
submit = gr.Button("Submit")
gr.Examples(
examples=[
["What are the latest developments in AI?"],
["Tell me about recent updates on GitHub"],
["What are the best hotels in Galapagos, Ecuador?"],
["Summarize recent advancements in Python programming"],
],
inputs=msg,
)
submit.click(protected_clear_and_update_chat,
inputs=[msg, chatbot, use_web_search, model_dropdown, temperature_slider, is_generating],
outputs=[msg, chatbot, is_generating])
msg.submit(protected_clear_and_update_chat,
inputs=[msg, chatbot, use_web_search, model_dropdown, temperature_slider, is_generating],
outputs=[msg, chatbot, is_generating])
gr.Markdown(
"""
## How to use
1. Upload PDF documents using the file input at the top.
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
3. Ask questions in the textbox.
4. Toggle "Use Web Search" to switch between PDF chat and web search.
5. Adjust Temperature and Repetition Penalty sliders to fine-tune the response generation.
6. Click "Submit" or press Enter to get a response.
"""
)
if __name__ == "__main__":
demo.launch(share=True) |