Spaces:
Sleeping
Sleeping
File size: 26,774 Bytes
5090140 28ed44f 177c5b5 28ed44f 0c730b1 10660a7 4892e48 435253f b52d39b bb706d3 10660a7 8ac8380 28ed44f 0ccfbeb 28ed44f 8b05473 9e38742 06d258f 3cb16ec c8302a1 28ed44f c8302a1 7f5b560 63b644a 096249d 63b644a 3450cd7 041d8cf 3450cd7 63b644a c21734b 3450cd7 75b7282 3450cd7 041d8cf 3450cd7 041d8cf 63b644a 041d8cf c21734b 041d8cf c21734b 041d8cf 63b644a 041d8cf ccc25c5 041d8cf 63b644a 041d8cf 75b7282 d48360b 75b7282 d48360b 75b7282 d48360b 75b7282 041d8cf 63b644a 041d8cf 63b644a 041d8cf c21734b 75b7282 14c16ca f8cc2f7 75b7282 c21734b ccc25c5 041d8cf c21734b 75b7282 c21734b f8cc2f7 c21734b b52d39b 041d8cf d48360b 041d8cf d48360b ccc25c5 673cc44 ccc25c5 2982f30 75b7282 53b9156 041d8cf d48360b 53b9156 d48360b b7cb350 c8302a1 8da6a04 c8302a1 412b763 c8302a1 ddc0536 c8302a1 ddc0536 c8302a1 ddc0536 c8302a1 ddc0536 28ed44f 8da6a04 687c2f0 8da6a04 687c2f0 8da6a04 85693d5 8da6a04 85693d5 3450cd7 85693d5 3450cd7 85693d5 8da6a04 4d152e0 d32ce41 646f8a3 d32ce41 feeb0e7 8da6a04 10660a7 0ccfbeb 10660a7 40aa611 10660a7 0ccfbeb 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 1dc5b0f 10660a7 4d152e0 10660a7 1dc5b0f 10660a7 4d152e0 1dc5b0f 10660a7 1dc5b0f 4d152e0 10660a7 4d152e0 10660a7 1dc5b0f 0ccfbeb 8b01918 4d152e0 8b01918 10660a7 c598bfb 3cb16ec a491b68 ebcb412 3cb16ec 8f325c3 ebcb412 f8cc2f7 ebcb412 a491b68 3cb16ec 85693d5 ebcb412 4920472 a491b68 673cc44 ebcb412 3cb16ec ebcb412 ccc25c5 ebcb412 3cb16ec ebcb412 a491b68 ebcb412 3cb16ec c598bfb 3cb16ec c598bfb ebcb412 b526692 3cb16ec b526692 3cb16ec b526692 ebcb412 c21734b ebcb412 4920472 8e9b65b 4920472 b6683d4 47402cb b6683d4 3cb16ec 47402cb c598bfb 3cb16ec b6683d4 a491b68 ef44cd9 a491b68 59368fb b6683d4 8b05473 3cb16ec 0847b05 c598bfb b6683d4 b526692 3cb16ec b526692 3cb16ec b526692 8da6a04 4920472 47402cb 0847b05 d32ce41 26aa94d 34461d3 a491b68 20ff049 ef44cd9 7a3b01a ef44cd9 feeb0e7 ef44cd9 feeb0e7 ef44cd9 feeb0e7 ef44cd9 feeb0e7 47402cb 8b01918 28ed44f 47402cb 8da6a04 0f075d7 8b01918 c8302a1 d613eb7 8b01918 c8302a1 8da6a04 0f075d7 8b01918 041d8cf a491b68 8b01918 4b05267 c8302a1 ced5a78 3cb16ec a491b68 c86dfe0 a491b68 3cb16ec 8b01918 8da6a04 8b01918 3d30d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 |
import os
import json
import re
import gradio as gr
import pandas as pd
import requests
import random
import urllib.parse
import spacy
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from typing import List, Dict
from tempfile import NamedTemporaryFile
from bs4 import BeautifulSoup
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceHub
from langchain_core.documents import Document
from sentence_transformers import SentenceTransformer
from llama_parse import LlamaParse
from llama_cpp import Llama
from llama_cpp_agent.llm_agent import LlamaCppAgent
from llama_cpp_agent.messages_formatter import MessagesFormatterType
from llama_cpp_agent.providers.llama_cpp_endpoint_provider import LlamaCppEndpointSettings
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
# Load SentenceTransformer model
sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
def load_spacy_model():
try:
# Try to load the model
return spacy.load("en_core_web_sm")
except OSError:
# If loading fails, download the model
os.system("python -m spacy download en_core_web_sm")
# Try loading again
return spacy.load("en_core_web_sm")
# Load spaCy model
nlp = load_spacy_model()
class EnhancedContextDrivenChatbot:
def __init__(self, history_size: int = 10, max_history_chars: int = 5000):
self.history = []
self.history_size = history_size
self.max_history_chars = max_history_chars
self.entity_tracker = {}
self.conversation_context = ""
self.model = None
self.last_instructions = None
def add_to_history(self, text: str):
self.history.append(text)
while len(' '.join(self.history)) > self.max_history_chars or len(self.history) > self.history_size:
self.history.pop(0)
# Update entity tracker
doc = nlp(text)
for ent in doc.ents:
if ent.label_ not in self.entity_tracker:
self.entity_tracker[ent.label_] = set()
self.entity_tracker[ent.label_].add(ent.text)
# Update conversation context
self.conversation_context += f" {text}"
self.conversation_context = ' '.join(self.conversation_context.split()[-100:]) # Keep last 100 words
def get_context(self):
return self.conversation_context
def is_follow_up_question(self, question):
doc = nlp(question.lower())
follow_up_indicators = set(['it', 'this', 'that', 'these', 'those', 'he', 'she', 'they', 'them'])
return any(token.text in follow_up_indicators for token in doc) or question.strip().startswith("What about")
def extract_topics(self, text):
doc = nlp(text)
return [chunk.text for chunk in doc.noun_chunks]
def extract_instructions(self, text):
instruction_patterns = [
r"(.*?),?\s*(?:please\s+)?(provide\s+(?:me\s+)?a\s+.*?|give\s+(?:me\s+)?a\s+.*?|create\s+a\s+.*?)$",
r"(.*?),?\s*(?:please\s+)?(summarize|analyze|explain|describe|elaborate\s+on).*$",
r"(.*?),?\s*(?:please\s+)?(in\s+detail|briefly|concisely).*$",
]
for pattern in instruction_patterns:
match = re.match(pattern, text, re.IGNORECASE)
if match:
return match.group(1).strip(), match.group(2).strip()
return text, None
def get_most_relevant_context(self, question):
if not self.history:
return question
# Create a combined context from history
combined_context = self.get_context()
# Get embeddings
context_embedding = sentence_model.encode([combined_context])[0]
question_embedding = sentence_model.encode([question])[0]
# Calculate similarity
similarity = cosine_similarity([context_embedding], [question_embedding])[0][0]
# If similarity is high, it's likely a follow-up question
if similarity > 0.5: # This threshold can be adjusted
return f"{combined_context} {question}"
# Otherwise, it might be a new topic
return question
def rephrase_query(self, question, instructions=None):
if not self.model:
return question # Return original question if no model is available
instruction_prompt = f"Instructions: {instructions}\n" if instructions else ""
prompt = f"""
Given the conversation context, the current question, and any provided instructions, rephrase the question to include relevant context and rephrase it to more search-engine-friendly query:
Conversation context: {self.get_context()}
Current question: {question}
{instruction_prompt}
Rephrased question:
"""
rephrased_question = generate_chunked_response(self.model, prompt)
return rephrased_question.strip()
def process_question(self, question):
core_question, instructions = self.extract_instructions(question)
if self.is_follow_up_question(core_question):
contextualized_question = self.get_most_relevant_context(core_question)
contextualized_question = self.rephrase_query(contextualized_question, instructions)
else:
contextualized_question = core_question
topics = self.extract_topics(contextualized_question)
self.add_to_history(question)
self.last_instructions = instructions
return contextualized_question, topics, self.entity_tracker, instructions
# Initialize LlamaParse
llama_parser = LlamaParse(
api_key=llama_cloud_api_key,
result_type="markdown",
num_workers=4,
verbose=True,
language="en",
)
def load_document(file: NamedTemporaryFile, parser: str = "pypdf") -> List[Document]:
"""Loads and splits the document into pages."""
if parser == "pypdf":
loader = PyPDFLoader(file.name)
return loader.load_and_split()
elif parser == "llamaparse":
try:
documents = llama_parser.load_data(file.name)
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
except Exception as e:
print(f"Error using Llama Parse: {str(e)}")
print("Falling back to PyPDF parser")
loader = PyPDFLoader(file.name)
return loader.load_and_split()
else:
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
def update_vectors(files, parser):
if not files:
return "Please upload at least one PDF file."
embed = get_embeddings()
total_chunks = 0
all_data = []
for file in files:
data = load_document(file, parser)
all_data.extend(data)
total_chunks += len(data)
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
database.add_documents(all_data)
else:
database = FAISS.from_documents(all_data, embed)
database.save_local("faiss_database")
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def clear_cache():
if os.path.exists("faiss_database"):
os.remove("faiss_database")
return "Cache cleared successfully."
else:
return "No cache to clear."
def get_model(temperature, top_p, repetition_penalty):
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
model_kwargs={
"temperature": temperature,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"max_length": 800
},
huggingfacehub_api_token=huggingface_token
)
MAX_PROMPT_CHARS = 20000 # Adjust based on your model's limitations
def chunk_text(text: str, max_chunk_size: int = 800) -> List[str]:
chunks = []
current_chunk = ""
for sentence in re.split(r'(?<=[.!?])\s+', text):
if len(current_chunk) + len(sentence) > max_chunk_size:
chunks.append(current_chunk.strip())
current_chunk = sentence
else:
current_chunk += " " + sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def get_most_relevant_chunks(question: str, chunks: List[str], top_k: int = 3) -> List[str]:
question_embedding = sentence_model.encode([question])[0]
chunk_embeddings = sentence_model.encode(chunks)
similarities = cosine_similarity([question_embedding], chunk_embeddings)[0]
top_indices = np.argsort(similarities)[-top_k:]
return [chunks[i] for i in top_indices]
def generate_chunked_response(model, prompt, max_tokens=800, max_chunks=5):
full_response = ""
for i in range(max_chunks):
try:
chunk = model(prompt + full_response, max_new_tokens=max_tokens)
chunk = chunk.strip()
if chunk.endswith((".", "!", "?")):
full_response += chunk
break
full_response += chunk
except Exception as e:
print(f"Error in generate_chunked_response: {e}")
break
return full_response.strip()
def extract_text_from_webpage(html):
soup = BeautifulSoup(html, 'html.parser')
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = '\n'.join(chunk for chunk in chunks if chunk)
return text
_useragent_list = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
]
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None):
escaped_term = urllib.parse.quote_plus(term)
start = 0
all_results = []
max_chars_per_page = 8000
print(f"Starting Google search for term: '{term}'")
with requests.Session() as session:
while start < num_results:
try:
user_agent = random.choice(_useragent_list)
headers = {
'User-Agent': user_agent
}
resp = session.get(
url="https://www.google.com/search",
headers=headers,
params={
"q": term,
"num": num_results - start,
"hl": lang,
"start": start,
"safe": safe,
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status()
print(f"Successfully retrieved search results page (start={start})")
except requests.exceptions.RequestException as e:
print(f"Error retrieving search results: {e}")
break
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
if not result_block:
print("No results found on this page")
break
print(f"Found {len(result_block)} results on this page")
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
print(f"Processing link: {link}")
try:
webpage = session.get(link, headers=headers, timeout=timeout)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page] + "..."
all_results.append({"link": link, "text": visible_text})
print(f"Successfully extracted text from {link}")
except requests.exceptions.RequestException as e:
print(f"Error retrieving webpage content: {e}")
all_results.append({"link": link, "text": None})
else:
print("No link found for this result")
all_results.append({"link": None, "text": None})
start += len(result_block)
print(f"Search completed. Total results: {len(all_results)}")
if not all_results:
print("No search results found. Returning a default message.")
return [{"link": None, "text": "No information found in the web search results."}]
return all_results
def estimate_tokens(text):
return len(text.split())
def truncate_text(text, max_tokens):
words = text.split()
if len(words) <= max_tokens:
return text
return ' '.join(words[:max_tokens])
def rerank_documents(query: str, documents: List[Document], top_k: int = 5) -> List[Document]:
query_embedding = sentence_model.encode([query])[0]
doc_embeddings = sentence_model.encode([doc.page_content for doc in documents])
similarities = cosine_similarity([query_embedding], doc_embeddings)[0]
ranked_indices = similarities.argsort()[::-1][:top_k]
return [documents[i] for i in ranked_indices]
def prepare_context(query: str, documents: List[Document], max_tokens: int) -> str:
reranked_docs = rerank_documents(query, documents)
context = ""
for doc in reranked_docs:
doc_content = f"Source: {doc.metadata.get('source', 'Unknown')}\nContent: {doc.page_content}\n\n"
if estimate_tokens(context + doc_content) > max_tokens:
break
context += doc_content
return truncate_text(context, max_tokens)
# Initialize LlamaCppAgent
def initialize_llama_cpp_agent():
main_model = LlamaCppEndpointSettings(
completions_endpoint_url="http://127.0.0.1:8080/completion"
)
llama_cpp_agent = LlamaCppAgent(
main_model,
debug_output=False,
system_prompt="You are an AI assistant designed to help with RAG tasks.",
predefined_messages_formatter_type=MessagesFormatterType.CHATML
)
return llama_cpp_agent
# Modify the ask_question function to use LlamaCppAgent
def ask_question(question, temperature, top_p, repetition_penalty, web_search, chatbot, user_instructions):
if not question:
return "Please enter a question."
llama_cpp_agent = initialize_llama_cpp_agent()
model = get_model(temperature, top_p, repetition_penalty)
# Update the chatbot's model
chatbot.model = model
embed = get_embeddings()
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
else:
database = None
max_attempts = 3
max_input_tokens = 20000
max_output_tokens = 800
if web_search:
contextualized_question, topics, entity_tracker, _ = chatbot.process_question(question)
try:
search_results = google_search(contextualized_question, num_results=5)
except Exception as e:
print(f"Error in web search: {e}")
return f"I apologize, but I encountered an error while searching for information: {str(e)}"
all_answers = []
for attempt in range(max_attempts):
try:
web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]]
if not web_docs:
return "I'm sorry, but I couldn't find any relevant information from the web search."
if database is None:
database = FAISS.from_documents(web_docs, embed)
else:
database.add_documents(web_docs)
database.save_local("faiss_database")
context_str = prepare_context(contextualized_question, web_docs, max_input_tokens // 2)
instruction_prompt = f"User Instructions: {user_instructions}\n" if user_instructions else ""
prompt_template = f"""
Answer the question based on the following web search results, conversation context, entity information, and user instructions:
Web Search Results:
{{context}}
Conversation Context: {{conv_context}}
Current Question: {{question}}
Topics: {{topics}}
Entity Information: {{entities}}
{instruction_prompt}
Provide a concise and relevant answer to the question.
"""
current_conv_context = truncate_text(chatbot.get_context(), max_input_tokens // 4)
current_topics = topics[:5]
current_entities = {k: list(v)[:3] for k, v in entity_tracker.items()}
formatted_prompt = prompt_template.format(
context=context_str,
conv_context=current_conv_context,
question=question,
topics=", ".join(current_topics),
entities=json.dumps(current_entities)
)
if estimate_tokens(formatted_prompt) > max_input_tokens:
formatted_prompt = truncate_text(formatted_prompt, max_input_tokens)
try:
# Use LlamaCppAgent for initial response generation
initial_response = llama_cpp_agent.get_chat_response(formatted_prompt, temperature=temperature)
# Use generate_chunked_response for further refinement if needed
full_response = generate_chunked_response(model, initial_response, max_tokens=max_output_tokens)
answer = extract_answer(full_response, user_instructions)
all_answers.append(answer)
break
except Exception as e:
print(f"Error in response generation: {e}")
if attempt == max_attempts - 1:
all_answers.append(f"I apologize, but I encountered an error while generating the response. Please try again with a simpler question.")
except Exception as e:
print(f"Error in ask_question (attempt {attempt + 1}): {e}")
if attempt == max_attempts - 1:
all_answers.append(f"I apologize, but an unexpected error occurred. Please try again with a different question or check your internet connection.")
answer = "\n\n".join(all_answers)
sources = set(doc.metadata['source'] for doc in web_docs)
sources_section = "\n\nSources:\n" + "\n".join(f"- {source}" for source in sources)
answer += sources_section
chatbot.add_to_history(answer)
return answer
else: # PDF document chat
for attempt in range(max_attempts):
try:
if database is None:
return "No documents available. Please upload PDF documents to answer questions."
retriever = database.as_retriever(search_kwargs={"k": 5})
relevant_docs = retriever.get_relevant_documents(question)
context_str = prepare_context(question, relevant_docs, max_input_tokens // 2)
instruction_prompt = f"User Instructions: {user_instructions}\n" if user_instructions else ""
prompt_template = f"""
Answer the question based on the following context from the PDF document:
Context:
{{context}}
Question: {{question}}
{instruction_prompt}
Provide a summarized and direct answer to the question.
"""
formatted_prompt = prompt_template.format(context=context_str, question=question)
if estimate_tokens(formatted_prompt) > max_input_tokens:
formatted_prompt = truncate_text(formatted_prompt, max_input_tokens)
try:
# Use LlamaCppAgent for initial response generation
initial_response = llama_cpp_agent.get_chat_response(formatted_prompt, temperature=temperature)
# Use generate_chunked_response for further refinement if needed
full_response = generate_chunked_response(model, initial_response, max_tokens=max_output_tokens)
answer = extract_answer(full_response, user_instructions)
return answer
except Exception as e:
print(f"Error in response generation: {e}")
if attempt == max_attempts - 1:
return f"I apologize, but I encountered an error while generating the response. Please try again with a simpler question."
except Exception as e:
print(f"Error in ask_question (attempt {attempt + 1}): {e}")
if attempt == max_attempts - 1:
return f"I apologize, but an unexpected error occurred. Please try again with a different question."
return "An unexpected error occurred. Please try again later."
def extract_answer(full_response, instructions=None):
answer_patterns = [
r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:",
r"Provide a concise and direct answer to the question:",
r"Provide a concise and relevant answer to the question.",
r"Answer:",
r"Provide a summarized and direct answer to the question.",
r"If the context doesn't contain relevant information, state that the information is not available in the document.",
r"Provide a summarized and direct answer to the original question without mentioning the web search or these instructions:",
r"Do not include any source information in your answer."
]
for pattern in answer_patterns:
match = re.split(pattern, full_response, flags=re.IGNORECASE)
if len(match) > 1:
full_response = match[-1].strip()
break
# Remove any remaining instruction-like phrases
cleanup_patterns = [
r"without mentioning the web search or these instructions\.",
r"Do not include any source information in your answer\.",
r"If the context doesn't contain relevant information, state that the information is not available in the document\."
]
for pattern in cleanup_patterns:
full_response = re.sub(pattern, "", full_response, flags=re.IGNORECASE).strip()
# Remove the user instructions if present
if instructions:
instruction_pattern = rf"User Instructions:\s*{re.escape(instructions)}.*?\n"
full_response = re.sub(instruction_pattern, "", full_response, flags=re.IGNORECASE | re.DOTALL)
return full_response.strip()
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Enhanced PDF Document Chat and Web Search")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="pypdf")
update_button = gr.Button("Upload PDF")
update_output = gr.Textbox(label="Update Status")
update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Conversation")
question_input = gr.Textbox(label="Ask a question")
instructions_input = gr.Textbox(label="Instructions for response (optional)", placeholder="Enter any specific instructions for the response here")
submit_button = gr.Button("Submit")
with gr.Column(scale=1):
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)
enhanced_context_driven_chatbot = EnhancedContextDrivenChatbot()
# Update the chat function to use the modified ask_question function
def chat(question, history, temperature, top_p, repetition_penalty, web_search, user_instructions):
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search, enhanced_context_driven_chatbot, user_instructions)
history.append((question, answer))
return "", history
submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox, instructions_input], outputs=[question_input, chatbot])
clear_button = gr.Button("Clear Cache")
clear_output = gr.Textbox(label="Cache Status")
clear_button.click(clear_cache, inputs=[], outputs=clear_output)
if __name__ == "__main__":
demo.launch() |