Spaces:
Sleeping
Sleeping
import fitz # PyMuPDF | |
import gradio as gr | |
import requests | |
from bs4 import BeautifulSoup | |
import urllib.parse | |
import random | |
import os | |
from dotenv import load_dotenv | |
import shutil | |
import tempfile | |
load_dotenv() # Load environment variables from .env file | |
# Now replace the hard-coded token with the environment variable | |
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
def clear_cache(): | |
try: | |
# Clear Gradio cache | |
cache_dir = tempfile.gettempdir() | |
shutil.rmtree(os.path.join(cache_dir, "gradio"), ignore_errors=True) | |
# Clear any custom cache you might have | |
# For example, if you're caching PDF files or search results: | |
if os.path.exists("output_summary.pdf"): | |
os.remove("output_summary.pdf") | |
# Add any other cache clearing operations here | |
print("Cache cleared successfully.") | |
return "Cache cleared successfully." | |
except Exception as e: | |
print(f"Error clearing cache: {e}") | |
return f"Error clearing cache: {e}" | |
PREDEFINED_QUERIES = { | |
"Recent Earnings": { | |
"query": "{company} recent quarterly earnings", | |
"instructions": "Provide the most recent quarterly earnings data for {company}. Include revenue, net income, and EPS. Specify the exact quarter and year." | |
}, | |
"Recent News": { | |
"query": "{company} recent news", | |
"instructions": "Summarize the most recent significant news about {company}. Focus on events that could impact the company's financial performance or stock price." | |
}, | |
"Credit Rating": { | |
"query": "{company} current credit rating", | |
"instructions": "Provide the most recent credit rating for {company}. Include the rating agency, the exact rating, and the date it was issued or last confirmed." | |
}, | |
"Earnings Call Transcript": { | |
"query": "{company} most recent earnings call transcript", | |
"instructions": "Summarize key points from {company}'s most recent earnings call. Include date of the call, major financial highlights, and any significant forward-looking statements." | |
} | |
} | |
_useragent_list = [ | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", | |
] | |
# Function to extract visible text from HTML content of a webpage | |
def extract_text_from_webpage(html): | |
print("Extracting text from webpage...") | |
soup = BeautifulSoup(html, 'html.parser') | |
for script in soup(["script", "style"]): | |
script.extract() # Remove scripts and styles | |
text = soup.get_text() | |
lines = (line.strip() for line in text.splitlines()) | |
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
text = '\n'.join(chunk for chunk in chunks if chunk) | |
print(f"Extracted text length: {len(text)}") | |
return text | |
# Function to perform a Google search and retrieve results | |
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): | |
"""Performs a Google search and returns the results.""" | |
print(f"Searching for term: {term}") | |
escaped_term = urllib.parse.quote_plus(term) | |
start = 0 | |
all_results = [] | |
max_chars_per_page = 8000 # Limit the number of characters from each webpage to stay under the token limit | |
with requests.Session() as session: | |
while start < num_results: | |
print(f"Fetching search results starting from: {start}") | |
try: | |
# Choose a random user agent | |
user_agent = random.choice(_useragent_list) | |
headers = { | |
'User-Agent': user_agent | |
} | |
print(f"Using User-Agent: {headers['User-Agent']}") | |
resp = session.get( | |
url="https://www.google.com/search", | |
headers=headers, | |
params={ | |
"q": term, | |
"num": num_results - start, | |
"hl": lang, | |
"start": start, | |
"safe": safe, | |
}, | |
timeout=timeout, | |
verify=ssl_verify, | |
) | |
resp.raise_for_status() | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching search results: {e}") | |
break | |
soup = BeautifulSoup(resp.text, "html.parser") | |
result_block = soup.find_all("div", attrs={"class": "g"}) | |
if not result_block: | |
print("No more results found.") | |
break | |
for result in result_block: | |
link = result.find("a", href=True) | |
if link: | |
link = link["href"] | |
print(f"Found link: {link}") | |
try: | |
webpage = session.get(link, headers=headers, timeout=timeout) | |
webpage.raise_for_status() | |
visible_text = extract_text_from_webpage(webpage.text) | |
if len(visible_text) > max_chars_per_page: | |
visible_text = visible_text[:max_chars_per_page] + "..." | |
all_results.append({"link": link, "text": visible_text}) | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching or processing {link}: {e}") | |
all_results.append({"link": link, "text": None}) | |
else: | |
print("No link found in result.") | |
all_results.append({"link": None, "text": None}) | |
start += len(result_block) | |
print(f"Total results fetched: {len(all_results)}") | |
return all_results | |
# Function to format the prompt for the Hugging Face API | |
def format_prompt(query, search_results, instructions): | |
formatted_results = "" | |
for result in search_results: | |
link = result["link"] | |
text = result["text"] | |
if link: | |
formatted_results += f"URL: {link}\nContent: {text}\n{'-' * 80}\n" | |
else: | |
formatted_results += "No link found.\n" + '-' * 80 + '\n' | |
prompt = f"""Instructions: {instructions} | |
User Query: {query} | |
Web Search Results: | |
{formatted_results} | |
Important: Provide a precise and factual response based solely on the information given above. Include specific dates, numbers, and sources where available. If exact information is not provided in the search results, clearly state that the information is not available in the given context. Do not make assumptions or provide information that is not directly supported by the search results. | |
Assistant:""" | |
return prompt | |
# Function to generate text using Hugging Face API | |
def generate_text(input_text, temperature=0.3, repetition_penalty=1.2, top_p=0.9): | |
print("Generating text using Hugging Face API...") | |
endpoint = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3" | |
headers = { | |
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", | |
"Content-Type": "application/json" | |
} | |
data = { | |
"inputs": input_text, | |
"parameters": { | |
"max_new_tokens": 1000, # Reduced to focus on more concise answers | |
"temperature": temperature, | |
"repetition_penalty": repetition_penalty, | |
"top_p": top_p, | |
"do_sample": True | |
} | |
} | |
try: | |
response = requests.post(endpoint, headers=headers, json=data) | |
response.raise_for_status() | |
# Check if response is JSON | |
try: | |
json_data = response.json() | |
except ValueError: | |
print("Response is not JSON.") | |
return None | |
# Extract generated text from response JSON | |
if isinstance(json_data, list): | |
# Handle list response (if applicable for your use case) | |
generated_text = json_data[0].get("generated_text") if json_data else None | |
elif isinstance(json_data, dict): | |
# Handle dictionary response | |
generated_text = json_data.get("generated_text") | |
else: | |
print("Unexpected response format.") | |
return None | |
if generated_text is not None: | |
print("Text generation complete using Hugging Face API.") | |
print(f"Generated text: {generated_text}") # Debugging line | |
return generated_text | |
else: | |
print("Generated text not found in response.") | |
return None | |
except requests.exceptions.RequestException as e: | |
print(f"Error generating text using Hugging Face API: {e}") | |
return None | |
# Function to read and extract text from a PDF | |
def read_pdf(file_obj): | |
with fitz.open(file_obj.name) as document: | |
text = "" | |
for page_num in range(document.page_count): | |
page = document.load_page(page_num) | |
text += page.get_text() | |
return text | |
# Function to format the prompt with instructions for text generation | |
def format_prompt_with_instructions(text, instructions): | |
prompt = f"{instructions}{text}\n\nAssistant:" | |
return prompt | |
# Function to save text to a PDF | |
def save_text_to_pdf(text, output_path): | |
print(f"Saving text to PDF at {output_path}...") | |
doc = fitz.open() # Create a new PDF document | |
page = doc.new_page() # Create a new page | |
# Set the page margins | |
margin = 50 # 50 points margin | |
page_width = page.rect.width | |
page_height = page.rect.height | |
text_width = page_width - 2 * margin | |
text_height = page_height - 2 * margin | |
# Define font size and line spacing | |
font_size = 9 | |
line_spacing = 1 * font_size | |
fontname = "times-roman" # Use a supported font name | |
# Process the text to handle line breaks and paragraphs | |
paragraphs = text.split("\n") # Split text into paragraphs | |
y_position = margin | |
for paragraph in paragraphs: | |
words = paragraph.split() | |
current_line = "" | |
for word in words: | |
word = str(word) # Ensure word is treated as string | |
# Calculate the length of the current line plus the new word | |
current_line_length = fitz.get_text_length(current_line + " " + word, fontsize=font_size, fontname=fontname) | |
if current_line_length <= text_width: | |
current_line += " " + word | |
else: | |
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname) | |
y_position += line_spacing | |
if y_position + line_spacing > page_height - margin: | |
page = doc.new_page() # Add a new page if text exceeds page height | |
y_position = margin | |
current_line = word | |
# Add the last line of the paragraph | |
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname) | |
y_position += line_spacing | |
# Add extra space for new paragraph | |
y_position += line_spacing | |
if y_position + line_spacing > page_height - margin: | |
page = doc.new_page() # Add a new page if text exceeds page height | |
y_position = margin | |
doc.save(output_path) # Save the PDF to the specified path | |
print("PDF saved successfully.") | |
# Integrated function to perform web scraping, formatting, and text generation | |
def scrape_and_display(query, num_results, instructions, web_search=True, temperature=0.7, repetition_penalty=1.0, top_p=0.9): | |
print(f"Scraping and displaying results for query: {query} with num_results: {num_results}") | |
if web_search: | |
search_results = google_search(query, num_results) | |
formatted_prompt = format_prompt(query, search_results, instructions) | |
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) | |
else: | |
formatted_prompt = format_prompt_with_instructions(query, instructions) | |
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) | |
print("Scraping and display complete.") | |
if generated_summary: | |
# Extract and return text starting from "Assistant:" | |
assistant_index = generated_summary.find("Assistant:") | |
if assistant_index != -1: | |
generated_summary = generated_summary[assistant_index:] | |
else: | |
generated_summary = "Assistant: No response generated." | |
print(f"Generated summary: {generated_summary}") # Debugging line | |
return generated_summary | |
# Main Gradio interface function | |
def gradio_interface(query, use_dashboard, use_pdf, pdf, num_results, custom_instructions, temperature, repetition_penalty, top_p, clear_cache_flag): | |
if clear_cache_flag: | |
return clear_cache() | |
if use_dashboard: | |
results = [] | |
for query_type, query_info in PREDEFINED_QUERIES.items(): | |
formatted_query = query_info['query'].format(company=query) | |
formatted_instructions = query_info['instructions'].format(company=query) | |
result = scrape_and_display(formatted_query, num_results=num_results, instructions=formatted_instructions, web_search=True, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) | |
results.append(f"**{query_type}**\n\n{result}\n\n") | |
generated_summary = "\n".join(results) | |
elif use_pdf and pdf is not None: | |
pdf_text = read_pdf(pdf) | |
generated_summary = scrape_and_display(pdf_text, num_results=0, instructions=custom_instructions, web_search=False, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) | |
else: | |
generated_summary = scrape_and_display(query, num_results=num_results, instructions=custom_instructions, web_search=True, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) | |
output_pdf_path = "output_summary.pdf" | |
save_text_to_pdf(generated_summary, output_pdf_path) | |
return generated_summary, output_pdf_path | |
# Deploy Gradio Interface | |
gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Textbox(label="Company Name or Query"), | |
gr.Checkbox(label="Use Dashboard"), | |
gr.Checkbox(label="Use PDF"), | |
gr.File(label="Upload PDF"), | |
gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results"), | |
gr.Textbox(label="Custom Instructions"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Repetition Penalty"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top p"), | |
gr.Checkbox(label="Clear Cache", visible=False) | |
], | |
outputs=["text", gr.File(label="Generated PDF")], | |
title="Financial Analyst AI Assistant", | |
description="Enter a company name to get a financial dashboard, or enter a custom query. Optionally, upload a PDF for analysis. Adjust parameters as needed for optimal results.", | |
allow_flagging="never" | |
).launch(share=True) |