Spaces:
Sleeping
Sleeping
File size: 11,049 Bytes
f02770e 409c813 28ca0a2 33d3451 ad77a7a 2769ea6 33d3451 ceb6868 ad77a7a f89b7c9 da860a3 2769ea6 f89b7c9 2769ea6 da860a3 2769ea6 da860a3 2769ea6 f89b7c9 2769ea6 da860a3 2769ea6 f89b7c9 da860a3 8b21f9c f89b7c9 8b21f9c 28ca0a2 f89b7c9 da860a3 ceb6868 5a18aa8 f89b7c9 28ca0a2 5a18aa8 851f58a 28ca0a2 426506c 28ca0a2 426506c 2769ea6 da860a3 2769ea6 da860a3 426506c 2769ea6 28ca0a2 8b21f9c 33d3451 ad77a7a 33d3451 ad77a7a 33d3451 ad77a7a 33d3451 ad77a7a 33d3451 8b21f9c 33d3451 8b21f9c 33d3451 8b21f9c 436f2c6 8b21f9c f89b7c9 8b21f9c f89b7c9 8b21f9c 426506c 2769ea6 f89b7c9 da860a3 33d3451 8b21f9c 33d3451 851f58a 33d3451 4e8e1c0 ad77a7a 8b21f9c 33d3451 da860a3 8b21f9c ad77a7a 851f58a 8b21f9c f89b7c9 2769ea6 33d3451 8b21f9c 851f58a 8b21f9c f02770e 8b21f9c f02770e 8b21f9c ad77a7a 8b21f9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import gradio as gr
import requests
import time
import random
import os
import logging
from bs4 import BeautifulSoup
import trafilatura
from huggingface_hub import InferenceClient
# Set up logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
USER_AGENTS = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Safari/605.1.15',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Mozilla/5.0 (iPhone; CPU iPhone OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1'
]
def get_random_user_agent():
return random.choice(USER_AGENTS)
def extract_content_bs4(url, max_chars):
try:
response = requests.get(url, headers={'User-Agent': get_random_user_agent()}, timeout=10)
soup = BeautifulSoup(response.content, 'html.parser')
paragraphs = soup.find_all('p')
content = ' '.join([p.text for p in paragraphs])
return content[:max_chars] + "..." if len(content) > max_chars else content
except Exception as e:
return f"Error extracting content: {str(e)}"
def extract_content_trafilatura(url, max_chars):
try:
downloaded = trafilatura.fetch_url(url, headers={'User-Agent': get_random_user_agent()})
content = trafilatura.extract(downloaded, include_comments=False, include_tables=False)
return content[:max_chars] + "..." if content and len(content) > max_chars else content
except Exception as e:
return f"Error extracting content: {str(e)}"
def search_searx(query, instance_url='https://searx.org', categories='general', max_retries=3, num_results=10,
use_trafilatura=False, time_range='', language='en', safesearch=0, search_engines='all',
sort_by='relevance', max_chars=1000):
"""
Perform a search using the SearXNG API with advanced options.
"""
search_endpoint = f"{instance_url}/search"
params = {
'q': query,
'format': 'json',
'categories': categories,
'pageno': 1,
'time_range': time_range,
'language': language,
'safesearch': safesearch,
'results': str(num_results),
'engines': ','.join(search_engines) if 'all' not in search_engines else 'all',
'sort': sort_by
}
headers = {
'User-Agent': get_random_user_agent(),
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Accept-Language': 'en-US,en;q=0.5',
'Referer': instance_url,
'DNT': '1',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1'
}
for attempt in range(max_retries):
try:
response = requests.get(search_endpoint, params=params, headers=headers, timeout=10)
response.raise_for_status()
data = response.json()
if 'results' not in data or not data['results']:
return "No results found."
formatted_results = ""
for idx, result in enumerate(data['results'][:num_results], start=1):
title = result.get('title', 'No Title')
url = result.get('url', 'No URL')
if use_trafilatura:
content = extract_content_trafilatura(url, max_chars)
else:
content = extract_content_bs4(url, max_chars)
formatted_results += f"**{idx}. {title}**\n[{url}]({url})\n{content}\n\n"
return formatted_results
except requests.exceptions.RequestException as e:
if response.status_code == 429:
wait_time = 2 ** attempt + random.uniform(0, 1)
time.sleep(wait_time)
else:
return f"An error occurred while searching: {e}"
return "Max retries reached. Please try again later."
def summarize_with_llm(query, search_results):
logger.debug(f"Attempting to summarize results for query: {query}")
try:
api_key = os.getenv("HUGGINGFACE_API_KEY")
if not api_key:
logger.error("HUGGINGFACE_API_KEY environment variable is not set")
return "Error: Hugging Face API key is not set. Please set the HUGGINGFACE_API_KEY environment variable."
logger.debug("Initializing InferenceClient")
client = InferenceClient(
"mistralai/Mistral-Nemo-Instruct-2407",
token=api_key,
)
system_prompt = """You are an AI assistant tasked with summarizing search results. Your goal is to provide a concise, informative summary of the search results in relation to the user's query. Focus on the most relevant information and present it in a clear, organized manner."""
user_prompt = f"""Query: {query}
Search Results:
{search_results}
Please provide a summary of the search results in relation to the query. Highlight the most relevant information, identify any common themes or contradictions, and present the information in a clear and concise manner. If there are any gaps in the information or areas that require further research, please mention them as well."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
logger.debug("Sending request to Hugging Face API")
summary = ""
for message in client.chat_completion(
messages=messages,
max_tokens=500,
stream=True,
):
summary += message.choices[0].delta.content
logger.debug("Successfully generated summary")
return summary
except Exception as e:
logger.exception(f"Error in summarize_with_llm: {str(e)}")
return f"Error generating summary: {str(e)}"
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# 🕵️♂️ Advanced SearXNG Search with LLM Summary")
gr.Markdown(
"This application allows you to perform private searches using SearXNG with advanced options and get an AI-generated summary of the results."
)
with gr.Row():
with gr.Column():
query = gr.Textbox(
label="Search Query",
placeholder="Enter your search query here...",
lines=1
)
instance_url = gr.Textbox(
label="SearXNG Instance URL",
value="https://searx.org",
placeholder="https://searx.instance.url",
lines=1
)
categories = gr.Textbox(
label="Categories",
value="general",
placeholder="e.g., general, news, science",
lines=1
)
num_results = gr.Slider(
minimum=1,
maximum=20,
value=10,
step=1,
label="Number of Results"
)
use_trafilatura = gr.Checkbox(label="Use Trafilatura for extraction (instead of BeautifulSoup)")
time_range = gr.Dropdown(
choices=["", "day", "week", "month", "year"],
value="",
label="Time Range"
)
language = gr.Textbox(
label="Language",
value="en",
placeholder="e.g., en, fr, de",
lines=1
)
safesearch = gr.Slider(
minimum=0,
maximum=2,
value=0,
step=1,
label="SafeSearch (0: Off, 1: Moderate, 2: Strict)"
)
search_engines = gr.Dropdown(
choices=["all", "google", "bing", "duckduckgo", "wikipedia"],
value="all",
label="Search Engines",
multiselect=True
)
sort_by = gr.Dropdown(
choices=["relevance", "date"],
value="relevance",
label="Sort Results By"
)
max_chars = gr.Slider(
minimum=100,
maximum=10000,
value=1000,
step=100,
label="Max Characters to Extract"
)
search_button = gr.Button("Search and Summarize")
with gr.Column():
results = gr.Markdown("### Search Results and Summary will appear here...")
def perform_search_and_summarize(q, url, cats, num, use_traf, t_range, lang, safe, engines, sort, chars):
logger.debug(f"Performing search for query: {q}")
try:
search_results = search_searx(q, instance_url=url, categories=cats, num_results=int(num),
use_trafilatura=use_traf, time_range=t_range, language=lang, safesearch=int(safe),
search_engines=engines, sort_by=sort, max_chars=chars)
logger.debug("Search completed, attempting to summarize")
summary = summarize_with_llm(q, search_results)
return f"## AI-Generated Summary\n\n{summary}\n\n## Original Search Results\n\n{search_results}"
except Exception as e:
logger.exception(f"Error in perform_search_and_summarize: {str(e)}")
return f"An error occurred: {str(e)}"
search_button.click(
perform_search_and_summarize,
inputs=[query, instance_url, categories, num_results, use_trafilatura, time_range, language, safesearch,
search_engines, sort_by, max_chars],
outputs=results
)
gr.Markdown(
"""
---
**Note:** This application uses SearXNG to fetch results from multiple sources while preserving your privacy.
It then attempts to extract content from the original sources, which may be subject to the terms of service of those websites.
The AI-generated summary is provided by a Mistral Nemo LLM and should be reviewed for accuracy.
"""
)
return demo
iface = create_gradio_interface()
if __name__ == "__main__":
logger.info("Starting the application")
iface.launch() |