File size: 24,371 Bytes
33f1e50
72ddedb
33f1e50
 
 
 
 
 
 
72ddedb
33f1e50
 
 
 
 
 
 
218de65
3817f14
72ddedb
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ddedb
 
33f1e50
 
c17888a
 
33f1e50
 
72ddedb
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3817f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33f1e50
 
3817f14
 
33f1e50
 
3817f14
33f1e50
 
 
 
 
 
 
3817f14
 
 
 
 
 
 
 
 
 
 
 
 
33f1e50
3817f14
 
33f1e50
3817f14
33f1e50
 
3817f14
 
 
33f1e50
3817f14
 
 
 
 
 
33f1e50
3817f14
 
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ddedb
33f1e50
 
 
 
72ddedb
33f1e50
 
 
 
 
 
 
 
 
72ddedb
33f1e50
 
 
 
72ddedb
33f1e50
 
 
 
 
72ddedb
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ddedb
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ddedb
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6057fe5
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6057fe5
 
33f1e50
 
 
 
3817f14
 
 
 
 
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ddedb
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6057fe5
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3817f14
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218de65
 
 
 
 
 
 
 
 
 
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6057fe5
33f1e50
 
 
 
 
 
 
 
218de65
 
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ddedb
33f1e50
 
c17888a
33f1e50
 
 
 
 
 
 
 
72ddedb
33f1e50
 
 
72ddedb
33f1e50
 
 
 
 
 
 
 
 
 
72ddedb
 
 
33f1e50
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import requests
import gradio as gr
from bs4 import BeautifulSoup
import logging
from urllib.parse import urlparse
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from trafilatura import fetch_url, extract
import json
from huggingface_hub import InferenceClient
import random
import time
from sentence_transformers import SentenceTransformer, util
import torch
from datetime import datetime
import os
from dotenv import load_dotenv
import certifi
import random

# Load environment variables from a .env file
load_dotenv()

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# SearXNG instance details
SEARXNG_URL = 'https://shreyas094-searxng-local.hf.space/search'
SEARXNG_KEY = 'f9f07f93b37b8483aadb5ba717f556f3a4ac507b281b4ca01e6c6288aa3e3ae5'

# Use the environment variable
HF_TOKEN = os.getenv('HF_TOKEN')
client = InferenceClient(
    "mistralai/Mistral-Nemo-Instruct-2407",
    token=HF_TOKEN,
)

# Initialize the similarity model
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')


# Set up a session with retry mechanism
def requests_retry_session(
    retries=0,
    backoff_factor=0.1,
    status_forcelist=(500, 502, 504),
    session=None,
):
    session = session or requests.Session()
    retry = Retry(
        total=retries,
        read=retries,
        connect=retries,
        backoff_factor=backoff_factor,
        status_forcelist=status_forcelist,
    )
    adapter = HTTPAdapter(max_retries=retry)
    session.mount('http://', adapter)
    session.mount('https://', adapter)
    return session

def is_valid_url(url):
    try:
        result = urlparse(url)
        return all([result.scheme, result.netloc])
    except ValueError:
        return False

class ScrapingError(Exception):
    def __init__(self, message, status_code=None):
        self.message = message
        self.status_code = status_code
        super().__init__(self.message)

def get_random_user_agent(include_searx=False):
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15',
        # Add more user agents...
    ]
    
    searx_agent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
    
    if include_searx:
        return searx_agent
    else:
        return random.choice(user_agents)

@retry(stop=stop_after_attempt(1), wait=wait_exponential(multiplier=1, min=4, max=10))
def scrape_with_bs4(url, session):
    try:
        headers = {'User-Agent': get_random_user_agent()}
        response = session.get(url, timeout=15, headers=headers)
        response.raise_for_status()
        
        soup = BeautifulSoup(response.content, 'html.parser')
        main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content')
        
        if main_content:
            content = main_content.get_text(strip=True)
        else:
            content = soup.get_text(strip=True)
        
        return {'success': True, 'content': content}
    except requests.exceptions.HTTPError as e:
        if e.response.status_code == 403:
            logger.warning(f"403 Forbidden error for {url}. Retrying with backoff.")
            raise ScrapingError("403 Forbidden", status_code=403)
        logger.error(f"HTTP error scraping {url}: {e}")
        return {'success': False, 'error': str(e), 'status_code': e.response.status_code}
    except requests.exceptions.Timeout:
        logger.error(f"Timeout error scraping {url}")
        return {'success': False, 'error': 'Timeout'}
    except requests.exceptions.ConnectionError:
        logger.error(f"Connection error scraping {url}")
        return {'success': False, 'error': 'Connection Error'}
    except Exception as e:
        logger.error(f"Unexpected error scraping {url}: {e}")
        return {'success': False, 'error': str(e)}

@retry(stop=stop_after_attempt(1), wait=wait_exponential(multiplier=1, min=4, max=10))
def scrape_with_trafilatura(url):
    try:
        downloaded = fetch_url(url, timeout=10)
        if downloaded is None:
            raise ScrapingError("Failed to download content")
        content = extract(downloaded)
        if content is None:
            raise ScrapingError("Failed to extract content")
        return {'success': True, 'content': content}
    except ScrapingError as e:
        logger.error(f"Scraping error for {url}: {e}")
        return {'success': False, 'error': str(e)}
    except Exception as e:
        logger.error(f"Unexpected error scraping {url} with Trafilatura: {e}")
        return {'success': False, 'error': str(e)}

def rephrase_query(chat_history, query, temperature=0.2):
    system_prompt = """You are a highly intelligent conversational chatbot. Your task is to analyze the given context and new query, then decide whether to rephrase the query with or without incorporating the context. Follow these steps:
1. Determine if the new query is a continuation of the previous conversation or an entirely new topic.
2. If it's a continuation, rephrase the query by incorporating relevant information from the context to make it more specific and contextual.
3. If it's a new topic, rephrase the query to make it more appropriate for a web search, focusing on clarity and accuracy without using the previous context.
4. Provide ONLY the rephrased query without any additional explanation or reasoning."""

    user_prompt = f"""
Context:
{chat_history}

New query: {query}

Rephrased query:
"""

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]

    try:
        logger.info(f"Sending rephrasing request to LLM with temperature {temperature}")
        response = client.chat_completion(
            messages=messages,
            max_tokens=150,
            temperature=temperature
        )
        logger.info("Received rephrased query from LLM")
        rephrased_question = response.choices[0].message.content.strip()

        # Remove surrounding quotes if present
        if (rephrased_question.startswith('"') and rephrased_question.endswith('"')) or \
           (rephrased_question.startswith("'") and rephrased_question.endswith("'")):
            rephrased_question = rephrased_question[1:-1].strip()

        logger.info(f"Rephrased Query (cleaned): {rephrased_question}")
        return rephrased_question
    except Exception as e:
        logger.error(f"Error rephrasing query with LLM: {e}")
        return query  # Fallback to original query if rephrasing fails

def rerank_documents(query, documents):
    try:
        # Step 1: Encode the query and document summaries
        query_embedding = similarity_model.encode(query, convert_to_tensor=True)
        doc_summaries = [doc['summary'] for doc in documents]
        
        if not doc_summaries:
            logger.warning("No document summaries to rerank.")
            return documents  # Return original documents if there's nothing to rerank
        
        doc_embeddings = similarity_model.encode(doc_summaries, convert_to_tensor=True)
        
        # Step 2: Compute Cosine Similarity
        cosine_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
        
        # Step 3: Compute Dot Product Similarity
        dot_product_scores = torch.matmul(query_embedding, doc_embeddings.T)
        
        # Ensure dot_product_scores is a 1-D tensor
        if dot_product_scores.dim() == 0:
            dot_product_scores = dot_product_scores.unsqueeze(0)
        
        # Combine documents, cosine scores, and dot product scores
        scored_documents = list(zip(documents, cosine_scores, dot_product_scores))

        # Step 4: Sort documents by cosine similarity score
        scored_documents.sort(key=lambda x: x[1], reverse=True)
        
        # Step 5: Return only the top 5 documents
        reranked_docs = [doc[0] for doc in scored_documents[:5]]
        logger.info(f"Reranked to top {len(reranked_docs)} documents.")
        return reranked_docs
    except Exception as e:
        logger.error(f"Error during reranking documents: {e}")
        return documents[:5]  # Fallback to first 5 documents if reranking fails

def compute_similarity(text1, text2):
    # Encode the texts
    embedding1 = similarity_model.encode(text1, convert_to_tensor=True)
    embedding2 = similarity_model.encode(text2, convert_to_tensor=True)
    
    # Compute cosine similarity
    cosine_similarity = util.pytorch_cos_sim(embedding1, embedding2)
    
    return cosine_similarity.item()

def is_content_unique(new_content, existing_contents, similarity_threshold=0.8):
    for existing_content in existing_contents:
        similarity = compute_similarity(new_content, existing_content)
        if similarity > similarity_threshold:
            return False
    return True

def assess_relevance_and_summarize(llm_client, query, document, temperature=0.2):
    system_prompt = """You are a financial analyst AI assistant. Your task is to assess whether the given text is relevant to the user's query from a financial perspective and provide a brief summary if it is relevant."""

    user_prompt = f"""
Query: {query}

Document Content:
{document['content']}

Instructions:
1. Assess if the document is relevant to the query from a financial analyst's perspective.
2. If relevant, summarize the main points in 1-2 sentences.
3. If not relevant, simply state "Not relevant".

Your response should be in the following format:
Relevant: [Yes/No]
Summary: [Your 1-2 sentence summary if relevant, or "Not relevant" if not]

Remember to focus on financial aspects and implications in your assessment and summary.
"""

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]

    try:
        response = llm_client.chat_completion(
            messages=messages,
            max_tokens=150,
            temperature=temperature
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        logger.error(f"Error assessing relevance and summarizing with LLM: {e}")
        return "Error: Unable to assess relevance and summarize"

def scrape_full_content(url, scraper="trafilatura", max_chars=3000):
    try:
        logger.info(f"Scraping full content from: {url}")
        
        if scraper == "bs4":
            session = requests_retry_session()
            response = session.get(url, timeout=10)
            response.raise_for_status()
            soup = BeautifulSoup(response.content, 'html.parser')
            
            # Try to find the main content
            main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content')
            
            if main_content:
                content = main_content.get_text(strip=True, separator='\n')
            else:
                content = soup.get_text(strip=True, separator='\n')
        else:  # trafilatura
            downloaded = fetch_url(url)
            content = extract(downloaded, include_comments=False, include_tables=True, no_fallback=False)
        
        # Limit the content to max_chars
        return content[:max_chars] if content else ""
    except Exception as e:
        logger.error(f"Error scraping full content from {url}: {e}")
        return ""


def rate_limited_scraping(url, scraper_func, *args, **kwargs):
    time.sleep(random.uniform(1, 3))  # Random delay between 1-3 seconds
    return scraper_func(url, *args, **kwargs)

def llm_summarize(query, documents, llm_client, temperature=0.2):
    system_prompt = """You are Sentinel, a world class Financial analysis AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them."""

    # Prepare the context from the documents
    context = "\n\n".join([f"Document {i+1}:\nTitle: {doc['title']}\nURL: {doc['url']}\n(SCRAPED CONTENT)\n{doc['full_content']}\n(/SCRAPED CONTENT)" for i, doc in enumerate(documents)])

    user_prompt = f"""
Query: {query}

Context: {context}
Instructions: Write a detailed, long and complete research document that is informative and relevant to the user, who is a financial analyst, query based on provided context (the context consists of search results containing a brief description of the content of that page). You must use this context to answer the user's query in the best way possible.
Use an unbiased and writer tone in your response. Do not repeat the text. You must provide the answer in the response itself. If the user asks for links you can provide them.
If the user asks to summarize content from some links, you will be provided the entire content of the page inside the (SCRAPED CONTENT) block.
You can then use this content to summarize the text.Your responses should be detailed in length be informative, accurate and relevant to the user's query.
You can use markdowns to format your response. You should use bullet points to list the information.
Make sure the answer is long and is informative in a research document style. You have to cite the answer using [number] notation along with the appropriate source URL embedded in the notation.
You must cite the sentences with their relevant context number.
You must cite each and every part of the answer so the user can know where the information is coming from. Place these citations at the end of that particular sentence.
You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times.
The number refers to the number of the search result (passed in the context) used to generate that part of the answer. Anything inside the following (SCRAPED CONTENT) block provided below is for your knowledge returned by the search engine and is not shared by the user.
You have to answer question on the basis of it and cite the relevant information from it but you do not have to talk about the context in your response.
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
You do not need to do this for summarization tasks. Anything between the (SCRAPED CONTENT) is retrieved from a search engine and is not a part of the conversation with the user.

Please provide a comprehensive summary based on the above instructions:
"""

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]

    try:
        response = llm_client.chat_completion(
            messages=messages,
            max_tokens=5000,
            temperature=temperature
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        logger.error(f"Error in LLM summarization: {e}")
        return "Error: Unable to generate a summary. Please try again."

def search_and_scrape(query, chat_history, num_results=5, scraper="trafilatura", max_chars=3000, time_range="", language="all", category="", 
                      engines=[], safesearch=2, method="GET", llm_temperature=0.2):
    try:
        # Step 1: Rephrase the Query
        rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature)
        logger.info(f"Rephrased Query: {rephrased_query}")

        if not rephrased_query or rephrased_query.lower() == "not_needed":
            logger.info("No need to perform search based on the rephrased query.")
            return "No search needed for the provided input."

        # Search query parameters
        params = {
            'q': rephrased_query,
            'format': 'json',
            'num_results': num_results,
            'time_range': time_range,
            'language': language,
            'category': category,
            'engines': ','.join(engines),
            'safesearch': safesearch
        }

        # Remove empty parameters
        params = {k: v for k, v in params.items() if v != ""}

        # If no engines are specified, set default engines
        if 'engines' not in params:
            params['engines'] = 'google'  # Default to 'google' or any preferred engine
            logger.info("No engines specified. Defaulting to 'google'.")

        # Headers for SearXNG request
        headers = {
            'User-Agent': get_random_user_agent(include_searx=True),
            'Accept': 'application/json, text/javascript, */*; q=0.01',
            'Accept-Language': 'en-US,en;q=0.5',
            'Origin': 'https://shreyas094-searxng-local.hf.space',
            'Referer': 'https://shreyas094-searxng-local.hf.space/',
            'DNT': '1',
            'Connection': 'keep-alive',
            'Sec-Fetch-Dest': 'empty',
            'Sec-Fetch-Mode': 'cors',
            'Sec-Fetch-Site': 'same-origin',
        }

        # Send request to SearXNG
        logger.info(f"Sending request to SearXNG for query: {rephrased_query}")
        session = requests_retry_session()

        try:
            if method.upper() == "GET":
                response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where())
            else:  # POST
                response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where())
            
            response.raise_for_status()
        except requests.exceptions.RequestException as e:
            logger.error(f"Error during SearXNG request: {e}")
            return f"An error occurred during the search request: {e}"

        search_results = response.json()
        logger.debug(f"SearXNG Response: {search_results}")

        num_received = len(search_results.get('results', []))
        logger.info(f"Received {num_received} results from SearXNG")

        if num_received == 0:
            logger.warning("No results returned from SearXNG.")
            return "No results found for the given query."

        scraped_content = []

        for result in search_results.get('results', [])[:num_results]:
            url = result.get('url', '')
            title = result.get('title', 'No title')

            if not is_valid_url(url):
                logger.warning(f"Invalid URL: {url}")
                continue

            try:
                logger.info(f"Scraping content from: {url}")
                
                if scraper == "bs4":
                    content = scrape_with_bs4(url, session)
                else:  # trafilatura
                    content = scrape_with_trafilatura(url)
                
                # Limit content to max_chars
                scraped_content.append({
                    "title": title,
                    "url": url,
                    "content": content[:max_chars],
                    "scraper": scraper
                })
            except requests.exceptions.RequestException as e:
                logger.error(f"Error scraping {url}: {e}")
            except Exception as e:
                logger.error(f"Unexpected error while scraping {url}: {e}")

        if not scraped_content:
            logger.warning("No content scraped from search results.")
            return "No content could be scraped from the search results."

        # Step 3: Assess relevance, summarize, and check for uniqueness
        relevant_documents = []
        unique_summaries = []
        for doc in scraped_content:
            assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature)
            relevance, summary = assessment.split('\n', 1)
            
            if relevance.strip().lower() == "relevant: yes":
                summary_text = summary.replace("Summary: ", "").strip()
                
                if is_content_unique(summary_text, unique_summaries):
                    relevant_documents.append({
                        "title": doc['title'],
                        "url": doc['url'],
                        "summary": summary_text,
                        "scraper": doc['scraper']
                    })
                    unique_summaries.append(summary_text)
                else:
                    logger.info(f"Skipping similar content: {doc['title']}")

        if not relevant_documents:
            logger.warning("No relevant and unique documents found.")
            return "No relevant and unique financial news found for the given query."

        # Step 4: Rerank documents based on similarity to query
        reranked_docs = rerank_documents(rephrased_query, relevant_documents)
        
        if not reranked_docs:
            logger.warning("No documents remained after reranking.")
            return "No relevant financial news found after filtering and ranking."
        
        logger.info(f"Reranked and filtered to top {len(reranked_docs)} unique, finance-related documents.")

        # Step 5: Scrape full content for top 5 documents
        for doc in reranked_docs[:5]:
            full_content = scrape_full_content(doc['url'], scraper, max_chars)
            doc['full_content'] = full_content

        # Step 6: LLM Summarization
        llm_summary = llm_summarize(query, reranked_docs[:5], client, temperature=llm_temperature)

        return llm_summary

    except Exception as e:
        logger.error(f"Unexpected error in search_and_scrape: {e}")
        return f"An unexpected error occurred during the search and scrape process: {e}"


def chat_function(message, history, num_results, scraper, max_chars, time_range, language, category, engines, safesearch, method, llm_temperature):
    chat_history = "\n".join([f"{role}: {msg}" for role, msg in history])
    
    response = search_and_scrape(
        query=message,
        chat_history=chat_history,
        num_results=num_results,
        scraper=scraper,
        max_chars=max_chars,
        time_range=time_range,
        language=language,
        category=category,
        engines=engines,
        safesearch=safesearch,
        method=method,
        llm_temperature=llm_temperature
    )
    
    yield response

iface = gr.ChatInterface(
    chat_function,
    title="SearXNG Scraper for Financial News",
    description="Enter your query, and I'll search the web for the most recent and relevant financial news, scrape content, and provide summarized results.",
    additional_inputs=[
        gr.Slider(5, 20, value=10, step=1, label="Number of initial results"),
        gr.Dropdown(["bs4", "trafilatura"], value="trafilatura", label="Scraping Method"),
        gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"),
        gr.Dropdown(["", "day", "week", "month", "year"], value="year", label="Time Range"),
        gr.Dropdown(["all", "en", "fr", "de", "es", "it", "nl", "pt", "pl", "ru", "zh"], value="en", label="Language"),
        gr.Dropdown(["", "general", "news", "images", "videos", "music", "files", "it", "science", "social media"], value="", label="Category"),
        gr.Dropdown(
            ["google", "bing", "duckduckgo", "baidu", "yahoo", "qwant", "startpage"],
            multiselect=True,
            value=["google", "duckduckgo"],
            label="Engines"
        ),
        gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"),
        gr.Radio(["GET", "POST"], value="POST", label="HTTP Method"),
        gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"),
    ],
    additional_inputs_accordion=gr.Accordion("⚙️ Advanced Parameters", open=True),
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    chatbot=gr.Chatbot(
        show_copy_button=True,
        likeable=True,
        layout="bubble",
        height=400,
    )
)

if __name__ == "__main__":
    logger.info("Starting the SearXNG Scraper for Financial News using ChatInterface with Advanced Parameters")
    iface.launch(share=True)