File size: 49,171 Bytes
33f1e50
72ddedb
33f1e50
 
 
 
d07bea9
9988100
33f1e50
72ddedb
33f1e50
 
 
 
 
 
 
218de65
90e8b4f
6773bde
a5594d9
 
 
b688d25
e181e71
1a8ea50
567f2c0
 
 
27f1192
ec64596
6e7871f
 
 
 
 
 
 
 
8962e02
 
7646c7a
 
e181e71
 
8962e02
72ddedb
33f1e50
 
 
 
 
 
 
 
8962e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4458e5c
8962e02
 
33f1e50
 
6773bde
33f1e50
d0bc86a
33f1e50
 
 
1a8ea50
 
 
 
1e878de
1a8ea50
567f2c0
 
 
 
33f1e50
 
72ddedb
8962e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a40e01
ec64596
6759c67
1a40e01
 
 
 
 
ec64596
6759c67
 
1a40e01
 
 
6759c67
1a40e01
6759c67
 
 
ec64596
 
1a40e01
ec64596
 
 
1a40e01
 
ec64596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8962e02
ec64596
 
 
 
8962e02
ec64596
 
 
1a40e01
ec64596
8962e02
ec64596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8962e02
 
 
 
 
 
ec64596
 
 
 
 
33f1e50
 
c17888a
 
33f1e50
 
72ddedb
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5594d9
b577b65
a5594d9
 
 
 
 
 
 
 
 
 
 
b577b65
a5594d9
 
 
 
 
 
 
b577b65
a5594d9
b577b65
6773bde
 
a5594d9
 
 
6773bde
6c48447
a5594d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c48447
f57b788
6c48447
6773bde
33f1e50
6e7871f
c476da1
a0f74b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e7871f
 
 
8962e02
 
6e7871f
 
 
a0f74b4
 
 
 
c476da1
 
6e7871f
 
 
 
 
 
 
8962e02
6e7871f
 
 
 
8962e02
6e7871f
 
 
 
8962e02
 
 
 
c476da1
6e7871f
 
 
33f1e50
6e7871f
 
 
33f1e50
 
 
 
6e7871f
33f1e50
 
 
 
 
 
 
 
 
6e7871f
33f1e50
 
 
 
6e7871f
33f1e50
 
 
 
 
72ddedb
6e7871f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7646c7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e7871f
7646c7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33f1e50
6e7871f
 
 
7646c7a
 
 
 
6e7871f
 
7646c7a
6e7871f
 
 
7646c7a
6e7871f
 
7646c7a
 
 
 
 
33f1e50
7646c7a
6e7871f
7646c7a
33f1e50
7646c7a
 
 
33f1e50
7646c7a
 
33f1e50
7646c7a
 
33f1e50
7646c7a
 
6e7871f
33f1e50
7646c7a
 
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7646c7a
33f1e50
c51303e
33f1e50
 
e181e71
33f1e50
e181e71
33f1e50
c51303e
7646c7a
e181e71
 
 
8962e02
7646c7a
 
 
 
33f1e50
c51303e
7646c7a
33f1e50
7646c7a
 
 
 
 
c51303e
 
 
 
 
 
 
 
33f1e50
 
7646c7a
c51303e
0c8a7e0
 
33f1e50
7646c7a
 
 
 
 
 
 
 
33f1e50
7646c7a
 
1aa2150
eaf3dee
33f1e50
 
 
a5594d9
 
eaf3dee
 
 
 
 
c6a0be6
9b298f8
 
c6a0be6
b577b65
 
a5594d9
 
 
33f1e50
 
 
 
1a8ea50
8962e02
33f1e50
e4b2310
 
 
 
10f2ed2
 
 
 
 
 
 
 
 
 
 
 
 
33f1e50
 
 
 
 
1a8ea50
 
 
ead0fa7
a0f74b4
1a8ea50
 
128980b
1a8ea50
 
 
567f2c0
 
d0bc86a
567f2c0
00a13ce
567f2c0
 
 
 
 
 
1a8ea50
 
 
 
 
 
 
 
33f1e50
 
 
 
8962e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b864c9d
7646c7a
 
 
33f1e50
 
 
 
 
 
 
 
7646c7a
1e878de
 
 
 
 
 
 
 
 
b864c9d
1e878de
 
7646c7a
1e878de
7646c7a
1e878de
 
 
 
 
 
 
 
 
 
 
 
 
 
33f1e50
4706059
 
7646c7a
 
4706059
1e878de
7646c7a
1e878de
7646c7a
1e878de
 
7646c7a
1e878de
 
 
 
 
 
33f1e50
1e878de
 
7646c7a
1e878de
 
 
33f1e50
2b68ba8
07efc76
 
7646c7a
1e878de
07efc76
7646c7a
07efc76
 
 
7646c7a
07efc76
a5594d9
eaf3dee
 
7646c7a
eaf3dee
07efc76
 
6773bde
9988100
07efc76
7646c7a
 
 
 
 
 
07efc76
 
 
a5594d9
7646c7a
 
07efc76
7646c7a
 
07efc76
 
 
 
4706059
1e878de
33f1e50
 
 
 
 
7646c7a
c51303e
7646c7a
 
c51303e
 
 
7646c7a
c51303e
 
 
7646c7a
 
 
 
 
 
 
 
 
 
 
 
c51303e
 
 
7646c7a
c51303e
27f1192
7646c7a
 
c51303e
7646c7a
c51303e
33f1e50
 
7646c7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33f1e50
 
 
7646c7a
33f1e50
7646c7a
e4b2310
 
 
 
 
 
 
7646c7a
 
 
e4b2310
 
1a8ea50
7646c7a
1a8ea50
 
33f1e50
 
 
218de65
 
33f1e50
7646c7a
 
 
 
 
 
8962e02
 
 
 
 
 
 
 
 
 
 
 
 
7646c7a
8962e02
d8f14ff
33f1e50
8962e02
 
 
 
 
 
 
ec64596
 
8962e02
ec64596
d8f14ff
 
ec64596
 
 
8962e02
ec64596
 
 
 
 
 
 
 
 
 
 
 
9b298f8
d8f14ff
 
 
 
8962e02
d8f14ff
 
 
4458e5c
8962e02
d8f14ff
8962e02
 
 
d8f14ff
33f1e50
 
3a81b27
33f1e50
d8f14ff
 
4458e5c
d8f14ff
8962e02
 
d8f14ff
 
 
 
 
 
 
 
 
 
05d20f1
d8f14ff
05d20f1
d8f14ff
8962e02
7646c7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
import requests
import gradio as gr
import logging
from urllib.parse import urlparse
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from requests.exceptions import Timeout
from urllib.request import urlopen, Request
import json
from huggingface_hub import InferenceClient
import random
import time
from sentence_transformers import SentenceTransformer, util
import torch
from datetime import datetime
import os
from dotenv import load_dotenv
import certifi
import requests
from newspaper import Article
import PyPDF2
import io
import requests
import random
import datetime
from groq import Groq
import os
from mistralai import Mistral
from dotenv import load_dotenv
import re
from typing import List, Tuple
from rank_bm25 import BM25Okapi
from typing import List, Dict
import numpy as np
from math import log
from collections import Counter
import numpy as np
from typing import List, Dict, Tuple
import datetime
from abc import ABC, abstractmethod
from typing import List, Dict, Any
import spacy
from textblob import TextBlob

# Automatically get the current year
CURRENT_YEAR = datetime.datetime.now().year

# Load environment variables from a .env file
load_dotenv()

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# SearXNG instance details
SEARXNG_URL = os.getenv("SEARXNG_URL")
SEARXNG_KEY = os.getenv("SEARXNG_KEY")


logger.info(f"SearXNG URL: {SEARXNG_URL}")
logger.info(f"SearXNG Key: {SEARXNG_KEY}") 


# ... other environment variables ...
CUSTOM_LLM = os.getenv("CUSTOM_LLM")
CUSTOM_LLM_DEFAULT_MODEL = os.getenv("CUSTOM_LLM_DEFAULT_MODEL")

logger.info(f"CUSTOM_LLM: {CUSTOM_LLM}")
logger.info(f"CUSTOM_LLM_DEFAULT_MODEL: {CUSTOM_LLM_DEFAULT_MODEL}")

# Define the fetch_custom_models function here
def fetch_custom_models():
    if not CUSTOM_LLM:
        return []
    try:
        response = requests.get(f"{CUSTOM_LLM}/v1/models")
        response.raise_for_status()
        models = response.json().get("data", [])
        return [model["id"] for model in models]
    except Exception as e:
        logger.error(f"Error fetching custom models: {e}")
        return []

# Fetch custom models and determine the default model
custom_models = fetch_custom_models()
all_models = ["huggingface", "groq", "mistral"] + custom_models

# Determine the default model
default_model = CUSTOM_LLM_DEFAULT_MODEL if CUSTOM_LLM_DEFAULT_MODEL in all_models else "mistral"

logger.info(f"Default model selected: {default_model}")

# Use the environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
client = InferenceClient(
    "mistralai/Mistral-Small-Instruct-2409",
    token=HF_TOKEN,
)

# Default API key for examples (replace with a dummy value or leave empty)
GROQ_API_KEY = os.getenv("GROQ_API_KEY")

# Initialize Groq client
groq_client = Groq(api_key=GROQ_API_KEY)

# Initialize Mistral client
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
mistral_client = Mistral(api_key=MISTRAL_API_KEY)

# Initialize the similarity model
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')

# Step 1: Create a base class for AI models
class AIModel(ABC):
    @abstractmethod
    def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str:
        pass

# Step 2: Implement specific classes for each AI model
class HuggingFaceModel(AIModel):
    def __init__(self, client):
        self.client = client

    def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str:
        response = self.client.chat_completion(
            messages=messages,
            max_tokens=max_tokens,
            temperature=temperature
        )
        return response.choices[0].message.content.strip()

class GroqModel(AIModel):
    def __init__(self, client):
        self.client = client

    def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str:
        response = self.client.chat.completions.create(
            messages=messages,
            model="llama-3.1-70b-versatile",
            max_tokens=max_tokens,
            temperature=temperature
        )
        return response.choices[0].message.content.strip()

class MistralModel(AIModel):
    def __init__(self, client):
        self.client = client

    def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str:
        response = self.client.chat.complete(
            model="open-mistral-nemo",
            messages=messages,
            max_tokens=max_tokens,
            temperature=temperature
        )
        return response.choices[0].message.content.strip()

# Step 3: Use a factory pattern to create model instances
class CustomModel(AIModel):
    def __init__(self, model_name):
        self.model_name = model_name

    def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str:
        try:
            response = requests.post(
                f"{CUSTOM_LLM}/v1/chat/completions",
                json={
                    "model": self.model_name,
                    "messages": messages,
                    "max_tokens": max_tokens,
                    "temperature": temperature
                }
            )
            response.raise_for_status()
            return response.json()["choices"][0]["message"]["content"].strip()
        except Exception as e:
            logger.error(f"Error generating response from custom model: {e}")
            return "Error: Unable to generate response from custom model."

class AIModelFactory:
    @staticmethod
    def create_model(model_name: str, client: Any = None) -> AIModel:
        if model_name == "huggingface":
            return HuggingFaceModel(client)
        elif model_name == "groq":
            return GroqModel(client)
        elif model_name == "mistral":
            return MistralModel(client)
        elif CUSTOM_LLM and model_name in fetch_custom_models():
            return CustomModel(model_name)
        else:
            raise ValueError(f"Unsupported model: {model_name}")

def determine_query_type(query: str, chat_history: str, ai_model: AIModel) -> str:
    system_prompt = """You are Sentinel, an intelligent AI agent tasked with determining whether a user query requires a web search or can be answered using your existing knowledge base. Your knowledge cutoff date is 2023, and the current year is 2024. Your task is to analyze the query and decide on the appropriate action.

    Instructions for Sentinel:
    1. If the query is a general conversation starter, greeting, or can be answered with information from 2023 or earlier, classify it as "knowledge_base".
    2. If the query requires information from 2024, up-to-date news, current events, or real-time data, classify it as "web_search".
    3. For queries about ongoing events, trends, or situations that likely have significant updates in 2024, classify as "web_search".
    4. Consider the chat history when making your decision.
    5. Respond with ONLY "knowledge_base" or "web_search".

    Instructions for users (include this in your first interaction):
    "Hello! I'm Sentinel, your AI assistant. I can help you with various tasks and answer your questions. Here's how to get the best results:
    - My knowledge base is current up to 2023. For information up to that year, I can answer directly.
    - For any information, events, or data from 2024 onwards, I'll need to search the web for the most up-to-date results.
    - If you're asking about ongoing situations or need the very latest information, please mention that you need current data.
    - Feel free to ask follow-up questions or request clarification on any topic.
    - If you're unsure whether I need to search, you can ask 'Do you need to search the web for this?'

    How can I assist you today?"

    Examples:
    - "Hi, how are you?" -> "knowledge_base"
    - "What were the major events of 2023?" -> "knowledge_base"
    - "What's the latest news in the US?" -> "web_search"
    - "Can you explain quantum computing?" -> "knowledge_base"
    - "What are the current stock prices for Apple?" -> "web_search"
    - "Who won the 2024 Super Bowl?" -> "web_search"
    - "What were the key findings of the 2022 climate report?" -> "knowledge_base"
    """

    user_prompt = f"""
    Chat history:
    {chat_history}

    Current query: {query}

    Determine if this query requires a web search or can be answered from the knowledge base.
    """

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]

    try:
        response = ai_model.generate_response(
            messages=messages,
            max_tokens=10,
            temperature=0.2
        )
        decision = response.strip().lower()
        return "web_search" if decision == "web_search" else "knowledge_base"
    except Exception as e:
        logger.error(f"Error determining query type: {e}")
        return "web_search"  # Default to web search if there's an error

def generate_ai_response(query: str, chat_history: str, ai_model: AIModel, temperature: float) -> str:
    system_prompt = """You are a helpful AI assistant. Provide a concise and informative response to the user's query based on your existing knowledge. Do not make up information or claim to have real-time data."""

    user_prompt = f"""
    Chat history:
    {chat_history}

    Current query: {query}

    Please provide a response to the query.
    """

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]

    try:
        response = ai_model.generate_response(
            messages=messages,
            max_tokens=500,
            temperature=temperature
        )
        return response
    except Exception as e:
        logger.error(f"Error generating AI response: {e}")
        return "I apologize, but I'm having trouble generating a response at the moment. Please try again later."


# Set up a session with retry mechanism
def requests_retry_session(
    retries=0,
    backoff_factor=0.1,
    status_forcelist=(500, 502, 504),
    session=None,
):
    session = session or requests.Session()
    retry = Retry(
        total=retries,
        read=retries,
        connect=retries,
        backoff_factor=backoff_factor,
        status_forcelist=status_forcelist,
    )
    adapter = HTTPAdapter(max_retries=retry)
    session.mount('http://', adapter)
    session.mount('https://', adapter)
    return session

def is_valid_url(url):
    try:
        result = urlparse(url)
        return all([result.scheme, result.netloc])
    except ValueError:
        return False

def scrape_pdf_content(url, max_chars=3000, timeout=5):
    try:
        logger.info(f"Scraping PDF content from: {url}")
        
        # Download the PDF file
        response = requests.get(url, timeout=timeout)
        response.raise_for_status()
        
        # Create a PDF reader object
        pdf_reader = PyPDF2.PdfReader(io.BytesIO(response.content))
        
        # Extract text from all pages
        content = ""
        for page in pdf_reader.pages:
            content += page.extract_text() + "\n"
        
        # Limit the content to max_chars
        return content[:max_chars] if content else ""
    except requests.Timeout:
        logger.error(f"Timeout error while scraping PDF content from {url}")
        return ""
    except Exception as e:
        logger.error(f"Error scraping PDF content from {url}: {e}")
        return ""

def scrape_with_newspaper(url):
    if url.lower().endswith('.pdf'):
        return scrape_pdf_content(url)
    
    logger.info(f"Starting to scrape with Newspaper3k: {url}")
    try:
        article = Article(url)
        article.download()
        article.parse()
        
        # Combine title and text
        content = f"Title: {article.title}\n\n"
        content += article.text
        
        # Add publish date if available
        if article.publish_date:
            content += f"\n\nPublish Date: {article.publish_date}"
        
        # Add authors if available
        if article.authors:
            content += f"\n\nAuthors: {', '.join(article.authors)}"
        
        # Add top image URL if available
        if article.top_image:
            content += f"\n\nTop Image URL: {article.top_image}"
        
        return content
    except Exception as e:
        logger.error(f"Error scraping {url} with Newspaper3k: {e}")
        return ""

def rephrase_query(chat_history, query, temperature=0.2):
    system_prompt = """You are a highly intelligent and context-aware conversational assistant. Your tasks are as follows:

1. Determine if the new query is a continuation of the previous conversation or an entirely new topic.

2. For both continuations and new topics:
   a. **Entity Identification and Quotation**:
      - Analyze the user's query to identify the main entities (e.g., organizations, brands, products, locations).
      - For each identified entity, enclose ONLY the entity itself in double quotes within the query.
      - If no identifiable entities are found, proceed without adding quotes.
   b. **Query Preservation**:
      - Maintain the entire original query, including any parts after commas or other punctuation.
      - Do not remove or truncate any part of the original query.

3. If it's a continuation:
   - Incorporate relevant information from the context to make the query more specific and contextual.
   - Ensure that entities from the previous context are properly quoted if they appear in the rephrased query.

4. For both continuations and new topics:
   - First, check if the query contains words indicating current information (e.g., "today", "now", "current", "latest"):
     - If present, do NOT add any date operators to the query
   - Otherwise, if the query mentions a specific time period (e.g., a quarter, year, or date range):
     - Add appropriate "after: " operators to the end of the rephrased query.
     - Use the format "after: YYYY" for date ranges.
   - If no specific time period is mentioned and no current-time indicators are present:
     - Append "after: {CURRENT_YEAR}" to the end of the rephrased query.
   - Do not use quotes or the "+" operator when adding dates.

5. **Output**:
   - Return ONLY the rephrased query, ensuring it is concise, clear, and contextually accurate.
   - Do not include any additional commentary or explanation.

### Example Scenarios

**Scenario 1: Query About Current Information**
- **User Query**: "What's the stock price of Apple today?"
- **Rephrased Query**: "What's the stock price of \"Apple\" today"

**Scenario 2: New Topic with Specific Quarter**
- **User Query**: "How did Bank of America perform during Q2 2024?"
- **Rephrased Query**: "How did \"Bank of America\" perform during Q2 2024 after: 2024"

**Scenario 3: Continuation with Date Range**
- **Previous Query**: "What were Apple's sales figures for 2023?"
- **User Query**: "How about for the first half of 2024?"
- **Rephrased Query**: "How about \"Apple\"'s sales figures for the first half of 2024 after: 2024"

**Scenario 4: Current Status Query**
- **User Query**: "What is the current market share of Toyota and Honda in the US?"
- **Rephrased Query**: "What is the current market share of \"Toyota\" and \"Honda\" in the \"US\""

**Scenario 5: Current Status Query**
- **User Query**: "Bank of America Q2 2024 earnings?"
- **Rephrased Query**: "\"Bank of America\" Q2 2024 earnings after: 2024""
"""

    # Create the user prompt with the chat history and current query
    user_prompt = f"""Conversation context: {chat_history}
New query: {query}
Current year: {CURRENT_YEAR}
Rephrased query:"""

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]

    try:
        logger.info(f"Sending rephrasing request to LLM with temperature {temperature}")
        response = client.chat_completion(
            messages=messages,
            max_tokens=150,
            temperature=temperature
        )
        logger.info("Received rephrased query from LLM")
        rephrased_question = response.choices[0].message.content.strip()

        # Remove surrounding quotes if present
        if (rephrased_question.startswith('"') and rephrased_question.endswith('"')) or \
           (rephrased_question.startswith("'") and rephrased_question.endswith("'")):
            rephrased_question = rephrased_question[1:-1].strip()

        logger.info(f"Rephrased Query (cleaned): {rephrased_question}")
        return rephrased_question
    except Exception as e:
        logger.error(f"Error rephrasing query with LLM: {e}")
        return query  # Fallback to original query if rephrasing fails

class BM25:
    def __init__(self, k1: float = 1.5, b: float = 0.75):
        self.k1 = k1  # term frequency saturation parameter
        self.b = b    # length normalization parameter
        self.corpus_size = 0
        self.doc_lengths = []
        self.avgdl = 0
        self.doc_freqs = []
        self.idf = {}
        self.doc_vectors = []
        
    def fit(self, corpus: List[str]):
        """
        Fit BM25 parameters to the corpus
        
        Args:
            corpus: List of document strings
        """
        self.corpus_size = len(corpus)
        
        # Calculate document lengths and average document length
        self.doc_lengths = []
        for doc in corpus:
            words = doc.lower().split()
            self.doc_lengths.append(len(words))
        self.avgdl = sum(self.doc_lengths) / self.corpus_size
        
        # Calculate document frequencies
        df = Counter()
        self.doc_vectors = []
        
        for doc in corpus:
            words = doc.lower().split()
            doc_words = set(words)
            for word in doc_words:
                df[word] += 1
            self.doc_vectors.append(Counter(words))
        
        # Calculate inverse document frequency
        self.idf = {}
        for word, freq in df.items():
            self.idf[word] = log((self.corpus_size - freq + 0.5) / (freq + 0.5))
    
    def get_scores(self, query: str) -> np.ndarray:
        """
        Calculate BM25 scores for the query against all documents
        
        Args:
            query: Query string
            
        Returns:
            numpy array of scores for each document
        """
        scores = np.zeros(self.corpus_size)
        query_words = query.lower().split()
        
        for word in query_words:
            if word not in self.idf:
                continue
                
            qi = self.idf[word]
            for idx, doc_vector in enumerate(self.doc_vectors):
                if word not in doc_vector:
                    continue
                    
                score = (qi * doc_vector[word] * (self.k1 + 1) /
                        (doc_vector[word] + self.k1 * (1 - self.b + self.b * 
                         self.doc_lengths[idx] / self.avgdl)))
                scores[idx] += score
                
        return scores

def prepare_documents_for_bm25(documents: List[Dict]) -> Tuple[List[str], List[Dict]]:
    """
    Prepare documents for BM25 ranking by combining title and content
    
    Args:
        documents: List of document dictionaries
        
    Returns:
        Tuple of (document texts, original documents)
    """
    doc_texts = []
    for doc in documents:
        # Combine title and content for better matching
        doc_text = f"{doc['title']} {doc['content']}"
        doc_texts.append(doc_text)
    return doc_texts, documents


class ImprovedRanking:
    def __init__(self):
        # Load spacy for text analysis
        self.nlp = spacy.load('en_core_web_sm')
        
    def analyze_query(self, query: str) -> Dict:
        """
        Analyze query to determine appropriate weights
        
        Args:
            query: Search query string
            
        Returns:
            Dictionary with query analysis results
        """
        doc = self.nlp(query)
        
        analysis = {
            'word_count': len(query.split()),
            'has_entities': bool(doc.ents),
            'is_question': any(token.tag_ == 'WP' or token.tag_ == 'WRB' for token in doc),
            'sentiment': TextBlob(query).sentiment.polarity
        }
        
        return analysis
    
    def get_adaptive_weights(self, query: str) -> Tuple[float, float]:
        """
        Calculate adaptive weights based on query characteristics
        
        Args:
            query: Search query string
            
        Returns:
            Tuple of (bm25_weight, semantic_weight)
        """
        analysis = self.analyze_query(query)
        
        # Base weights
        bm25_weight = 0.4
        semantic_weight = 0.6
        
        # Adjust weights based on query characteristics
        if analysis['word_count'] <= 2:
            # Short queries: favor keyword matching
            bm25_weight = 0.6
            semantic_weight = 0.4
        elif analysis['word_count'] >= 6:
            # Long queries: favor semantic understanding
            bm25_weight = 0.3
            semantic_weight = 0.7
            
        if analysis['has_entities']:
            # Queries with named entities: increase keyword importance
            bm25_weight += 0.1
            semantic_weight -= 0.1
            
        if analysis['is_question']:
            # Questions: favor semantic understanding
            bm25_weight -= 0.1
            semantic_weight += 0.1
            
        # Normalize weights to ensure they sum to 1
        total = bm25_weight + semantic_weight
        return bm25_weight/total, semantic_weight/total
    
    def calculate_relevance_score(self, doc: Dict, query: str, similarity_model) -> float:
        """
        Calculate comprehensive relevance score for a document
        
        Args:
            doc: Document dictionary with title and content
            query: Search query string
            similarity_model: Model for computing semantic similarity
            
        Returns:
            Float representing document relevance score
        """
        # 1. Title relevance (30%)
        title_embedding = similarity_model.encode(doc['title'], convert_to_tensor=True)
        query_embedding = similarity_model.encode(query, convert_to_tensor=True)
        title_similarity = torch.cosine_similarity(title_embedding, query_embedding, dim=0).item()
        
        # 2. Content relevance (40%)
        # Use first 512 tokens of content to avoid memory issues
        content_preview = ' '.join(doc['content'].split()[:512])
        content_embedding = similarity_model.encode(content_preview, convert_to_tensor=True)
        content_similarity = torch.cosine_similarity(content_embedding, query_embedding, dim=0).item()
        
        # 3. Query term presence (20%)
        query_terms = set(query.lower().split())
        title_terms = set(doc['title'].lower().split())
        content_terms = set(content_preview.lower().split())
        
        title_term_overlap = len(query_terms & title_terms) / len(query_terms)
        content_term_overlap = len(query_terms & content_terms) / len(query_terms)
        
        # 4. Document quality indicators (10%)
        quality_score = self.assess_document_quality(doc)
        
        # Combine scores with weights
        final_score = (
            title_similarity * 0.3 +
            content_similarity * 0.4 +
            ((title_term_overlap + content_term_overlap) / 2) * 0.2 +
            quality_score * 0.1
        )
        
        return final_score
    
    def assess_document_quality(self, doc: Dict) -> float:
        """
        Assess document quality based on various metrics
        
        Args:
            doc: Document dictionary
            
        Returns:
            Float representing document quality score
        """
        score = 0.0
        
        # 1. Length score (longer documents often have more information)
        content_length = len(doc['content'].split())
        length_score = min(content_length / 1000, 1.0)  # Cap at 1000 words
        
        # 2. Text structure score
        has_paragraphs = doc['content'].count('\n\n') > 0
        has_sections = bool(re.findall(r'\n[A-Z][^.!?]*[:]\n', doc['content']))
        
        # 3. Writing quality score (using basic metrics)
        blob = TextBlob(doc['content'])
        sentences = blob.sentences
        avg_sentence_length = sum(len(str(s).split()) for s in sentences) / len(sentences) if sentences else 0
        sentence_score = 1.0 if 10 <= avg_sentence_length <= 25 else 0.5
        
        # Combine quality metrics
        score = (
            length_score * 0.4 +
            (has_paragraphs * 0.2 + has_sections * 0.2) +
            sentence_score * 0.2
        )
        
        return score

# Now modify the rerank_documents_with_priority function to include BM25 ranking
def rerank_documents_improved(query: str, documents: List[Dict], 
                            similarity_model, max_results: int = 5) -> List[Dict]:
    """
    Rerank documents using improved scoring system
    
    Args:
        query: Search query string
        documents: List of document dictionaries
        similarity_model: Model for computing semantic similarity
        max_results: Maximum number of results to return
        
    Returns:
        List of reranked documents
    """
    ranker = ImprovedRanking()
    
    try:
        if not documents:
            return documents
            
        # Get adaptive weights based on query
        bm25_weight, semantic_weight = ranker.get_adaptive_weights(query)
        
        # Prepare documents for BM25
        doc_texts, original_docs = prepare_documents_for_bm25(documents)
        
        # Initialize and fit BM25
        bm25 = BM25()
        bm25.fit(doc_texts)
        
        # Get BM25 scores
        bm25_scores = bm25.get_scores(query)
        
        # Calculate comprehensive relevance scores
        relevance_scores = [
            ranker.calculate_relevance_score(doc, query, similarity_model)
            for doc in documents
        ]
        
        # Normalize scores
        bm25_scores_norm = (bm25_scores - np.min(bm25_scores)) / (np.max(bm25_scores) - np.min(bm25_scores))
        relevance_scores_norm = (np.array(relevance_scores) - np.min(relevance_scores)) / (np.max(relevance_scores) - np.min(relevance_scores))
        
        # Combine scores using adaptive weights
        final_scores = (bm25_weight * bm25_scores_norm + 
                       semantic_weight * relevance_scores_norm)
        
        # Create scored documents
        scored_documents = list(zip(documents, final_scores))
        
        # Sort by final score
        scored_documents.sort(key=lambda x: x[1], reverse=True)
        
        # Return top results
        return [doc for doc, score in scored_documents[:max_results]]
        
    except Exception as e:
        logger.error(f"Error during improved reranking: {e}")
        return documents[:max_results]

def compute_similarity(text1, text2):
    # Encode the texts
    embedding1 = similarity_model.encode(text1, convert_to_tensor=True)
    embedding2 = similarity_model.encode(text2, convert_to_tensor=True)
    
    # Compute cosine similarity
    cosine_similarity = util.pytorch_cos_sim(embedding1, embedding2)
    
    return cosine_similarity.item()

def is_content_unique(new_content, existing_contents, similarity_threshold=0.8):
    for existing_content in existing_contents:
        similarity = compute_similarity(new_content, existing_content)
        if similarity > similarity_threshold:
            return False
    return True

def assess_relevance_and_summarize(llm_client, query, document, temperature=0.2):
    system_prompt = """You are a world-class AI assistant specializing in news analysis and document summarization. Your task is to provide a comprehensive and detailed summary of the given document that captures its key points and relevance to the user's query."""

    user_prompt = f"""
Query: {query}

Document Title: {document['title']}
Document Content:
{document['content'][:1000]}  # Limit to first 1000 characters for efficiency

Instructions:
1. Provide a detailed summary that captures the unique aspects of this document. Include:
   - Key facts and figures
   - Dates of events or announcements
   - Names of important entities mentioned
   - Any metrics or changes reported
   - The potential impact or significance of the content
2. Focus on aspects that are most relevant to the user's query
3. Ensure the summary is distinctive and highlights what makes this particular document unique
4. Include any specific context that helps understand the document's significance

Your response should be in the following format:
Summary: [Your detailed summary]

Remember to:
- Highlight the most important information first
- Include specific numbers, dates, and facts when available
- Connect the information to the user's query where relevant
- Focus on what makes this document unique or noteworthy
"""

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]

    try:
        response = llm_client.chat_completion(
            messages=messages,
            max_tokens=300,
            temperature=temperature,
            top_p=0.9,
            frequency_penalty=1.4
        )
        summary = response.choices[0].message.content.strip()
        
        # If the summary starts with "Summary: ", remove it
        if summary.startswith("Summary: "):
            summary = summary[9:].strip()
            
        # Always return format as if document was relevant
        return f"Relevant: Yes\nSummary: {summary}"
    except Exception as e:
        logger.error(f"Error summarizing with LLM: {e}")
        return f"Relevant: Yes\nSummary: Error occurred while summarizing the document: {str(e)}"

def scrape_full_content(url, max_chars=3000, timeout=5, use_pydf2=True):
    try:
        logger.info(f"Scraping full content from: {url}")
        
        # Check if the URL ends with .pdf
        if url.lower().endswith('.pdf'):
            if use_pydf2:
                return scrape_pdf_content(url, max_chars, timeout)
            else:
                logger.info(f"Skipping PDF document: {url}")
                return None
        
        # Use Newspaper3k for non-PDF content
        content = scrape_with_newspaper(url)
        
        # Limit the content to max_chars
        return content[:max_chars] if content else ""
    except requests.Timeout:
        logger.error(f"Timeout error while scraping full content from {url}")
        return ""
    except Exception as e:
        logger.error(f"Error scraping full content from {url}: {e}")
        return ""

def llm_summarize(json_input, model, temperature=0.2):
    system_prompt = """You are Sentinel, a world-class AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them."""
    user_prompt = f"""
Please provide a comprehensive summary based on the following JSON input:
{json_input}
Instructions:
1. Analyze the query and the provided documents.
2. Write a detailed, long, and complete research document that is informative and relevant to the user's query based on provided context (the context consists of search results containing a brief description of the content of that page).
3. You must use this context to answer the user's query in the best way possible. Use an unbiased and journalistic tone in your response. Do not repeat the text.
4. Use an unbiased and professional tone in your response.
5. Do not repeat text verbatim from the input.
6. Provide the answer in the response itself.
7. You can use markdown to format your response.
8. Use bullet points to list information where appropriate.
9. Cite the answer using [number] notation along with the appropriate source URL embedded in the notation.
10. Place these citations at the end of the relevant sentences.
11. You can cite the same sentence multiple times if it's relevant to different parts of your answer.
12. Make sure the answer is not short and is informative.
13. Your response should be detailed, informative, accurate, and directly relevant to the user's query."""
    
    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]
    try:
        if model == "groq":
            response = groq_client.chat.completions.create(
                messages=messages,
                model="llama-3.1-70b-versatile",
                max_tokens=5500,
                temperature=temperature,
                top_p=0.9,
                presence_penalty=1.2,
                stream=False
            )
            return response.choices[0].message.content.strip()
        elif model == "mistral":
            response = mistral_client.chat.complete(
                model="open-mistral-nemo",
                messages=messages,
                max_tokens=10000,
                temperature=temperature,
                top_p=0.9,
                stream=False
            )
            return response.choices[0].message.content.strip()
        else:  # huggingface
            response = client.chat_completion(
                messages=messages,
                max_tokens=10000,
                temperature=temperature,
                frequency_penalty=1.4,
                top_p=0.9
            )
            return response.choices[0].message.content.strip()
    except Exception as e:
        logger.error(f"Error in LLM summarization: {e}")
        return "Error: Unable to generate a summary. Please try again."

def search_and_scrape(
    query: str,
    chat_history: str,
    ai_model: AIModel,
    num_results: int = 10,
    max_chars: int = 1500,
    time_range: str = "",
    language: str = "en",
    category: str = "general",
    engines: List[str] = [],
    safesearch: int = 2,
    method: str = "GET",
    llm_temperature: float = 0.2,
    timeout: int = 5,
    model: str = "huggingface",
    use_pydf2: bool = True
):
    try:
        # Initialize ImprovedRanking instead of DocumentRanker
        document_ranker = ImprovedRanking()
        
        # Step 1: Rephrase the Query
        rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature)
        logger.info(f"Rephrased Query: {rephrased_query}")

        if not rephrased_query or rephrased_query.lower() == "not_needed":
            logger.info("No need to perform search based on the rephrased query.")
            return "No search needed for the provided input."

        # [Search parameters and request handling remain the same...]
        params = {
            'q': rephrased_query,
            'format': 'json',
            'time_range': time_range,
            'language': language,
            'category': category,
            'engines': ','.join(engines),
            'safesearch': safesearch
        }

        # Remove empty parameters
        params = {k: v for k, v in params.items() if v != ""}
        
        if 'engines' not in params:
            params['engines'] = 'google'
            logger.info("No engines specified. Defaulting to 'google'.")

        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
            'Accept': 'application/json, text/javascript, */*; q=0.01',
            'Accept-Language': 'en-US,en;q=0.5',
            'Origin': 'https://shreyas094-searxng-local.hf.space',
            'Referer': 'https://shreyas094-searxng-local.hf.space/',
            'DNT': '1',
            'Connection': 'keep-alive',
            'Sec-Fetch-Dest': 'empty',
            'Sec-Fetch-Mode': 'cors',
            'Sec-Fetch-Site': 'same-origin',
        }

        scraped_content = []
        page = 1
        
        # Content scraping loop remains mostly the same, but add quality assessment
        while len(scraped_content) < num_results:
            params['pageno'] = page
            
            try:
                session = requests_retry_session()
                if method.upper() == "GET":
                    response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where())
                else:
                    response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where())
                
                response.raise_for_status()
            except requests.exceptions.RequestException as e:
                logger.error(f"Error during SearXNG request: {e}")
                return f"An error occurred during the search request: {e}"

            search_results = response.json()
            results = search_results.get('results', [])
            
            if not results:
                logger.warning(f"No more results returned from SearXNG on page {page}.")
                break

            for result in results:
                if len(scraped_content) >= num_results:
                    break
                
                url = result.get('url', '')
                title = result.get('title', 'No title')
                
                if not is_valid_url(url):
                    logger.warning(f"Invalid URL: {url}")
                    continue
                
                try:
                    logger.info(f"Processing content from: {url}")
                    content = scrape_full_content(url, max_chars, timeout, use_pydf2)
                    
                    if content is None:
                        continue
                    
                    if not content:
                        logger.warning(f"Failed to scrape content from {url}")
                        continue
                    
                    # Add initial quality assessment
                    doc_quality = document_ranker.assess_document_quality({
                        "title": title,
                        "content": content
                    })
                    
                    scraped_content.append({
                        "title": title,
                        "url": url,
                        "content": content,
                        "scraper": "pdf" if url.lower().endswith('.pdf') else "newspaper",
                        "quality_score": doc_quality
                    })
                    logger.info(f"Successfully scraped content from {url}. Quality score: {doc_quality}")
                    
                except requests.exceptions.RequestException as e:
                    logger.error(f"Error scraping {url}: {e}")
                except Exception as e:
                    logger.error(f"Unexpected error while scraping {url}: {e}")

            page += 1

        if not scraped_content:
            logger.warning("No content scraped from search results.")
            return "No content could be scraped from the search results."

        # Modified relevance assessment with improved analysis
        relevant_documents = []
        unique_summaries = set()
        
        for doc in scraped_content:
            assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature)
            relevance, summary = assessment.split('\n', 1)
            
            if relevance.strip().lower() == "relevant: yes":
                summary_text = summary.replace("Summary: ", "").strip()
                
                if is_content_unique(summary_text, unique_summaries, similarity_threshold=0.8):
                    # Calculate comprehensive relevance score using new method
                    relevance_score = document_ranker.calculate_relevance_score(
                        {
                            "title": doc['title'],
                            "content": doc['content'],
                            "summary": summary_text
                        },
                        rephrased_query,
                        similarity_model
                    )
                    
                    relevant_documents.append({
                        "title": doc['title'],
                        "url": doc['url'],
                        "content": doc['content'],
                        "summary": summary_text,
                        "scraper": doc['scraper'],
                        "relevance_score": relevance_score,
                        "quality_score": doc['quality_score']
                    })
                    unique_summaries.add(summary_text)

        if not relevant_documents:
            logger.warning("No relevant and unique documents found.")
            return "No relevant and unique content found for the given query."

        # Enhanced reranking using improved weights and BM25
        try:
            # Get query-adaptive weights
            bm25_weight, semantic_weight = document_ranker.get_adaptive_weights(rephrased_query)
            logger.info(f"Using adaptive weights - BM25: {bm25_weight}, Semantic: {semantic_weight}")
            
            # Prepare documents for BM25
            doc_texts = [f"{doc['title']} {doc['content']}" for doc in relevant_documents]
            
            # Initialize and fit BM25
            bm25 = BM25()
            bm25.fit(doc_texts)
            
            # Get BM25 scores
            bm25_scores = bm25.get_scores(rephrased_query)
            
            # Calculate semantic scores using title and content
            query_embedding = similarity_model.encode(rephrased_query, convert_to_tensor=True)
            doc_embeddings = similarity_model.encode(
                [f"{doc['title']} {doc['summary']}" for doc in relevant_documents],
                convert_to_tensor=True
            )
            semantic_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
            
            # Get quality scores
            quality_scores = np.array([doc['quality_score'] for doc in relevant_documents])
            
            # Normalize all scores
            bm25_scores_norm = normalize_scores(bm25_scores)
            semantic_scores_norm = normalize_scores(semantic_scores.numpy())
            quality_scores_norm = normalize_scores(quality_scores)
            relevance_scores = normalize_scores(
                np.array([doc['relevance_score'] for doc in relevant_documents])
            )
            
            # Combine scores with weights
            final_scores = (
                bm25_weight * bm25_scores_norm +
                semantic_weight * semantic_scores_norm +
                0.15 * quality_scores_norm +  # Add quality score weight
                0.15 * relevance_scores      # Reduced from 0.2 to accommodate quality
            )
            
            # Create scored documents
            scored_documents = list(zip(relevant_documents, final_scores))
            scored_documents.sort(key=lambda x: x[1], reverse=True)
            
            # Take top results
            reranked_docs = [doc for doc, _ in scored_documents[:num_results]]
            
        except Exception as e:
            logger.error(f"Error during document reranking: {e}")
            # Fallback to basic sorting by relevance and quality
            reranked_docs = sorted(
                relevant_documents,
                key=lambda x: (x['relevance_score'] + x['quality_score']) / 2,
                reverse=True
            )[:num_results]

        if not reranked_docs:
            logger.warning("No documents remained after reranking.")
            return "No relevant content found after filtering and ranking."

        # Prepare final documents for LLM
        llm_input = {
            "query": query,
            "documents": [
                {
                    "title": doc['title'],
                    "url": doc['url'],
                    "summary": doc['summary'],
                    "content": doc['content'],
                    "quality_score": doc['quality_score']  # Include quality score
                } for doc in reranked_docs
            ]
        }

        # LLM Summarization
        llm_summary = llm_summarize(json.dumps(llm_input), model, temperature=llm_temperature)
        
        return llm_summary

    except Exception as e:
        logger.error(f"Unexpected error in search_and_scrape: {e}")
        return f"An unexpected error occurred during the search and scrape process: {e}"

def normalize_scores(scores: np.ndarray) -> np.ndarray:
    """Normalize scores to range [0, 1]"""
    if np.all(scores == scores[0]):
        return np.ones_like(scores)
    return (scores - np.min(scores)) / (np.max(scores) - np.min(scores))

# Helper function to get the appropriate client for each model
def get_client_for_model(model: str) -> Any:
    if model == "huggingface":
        return InferenceClient("mistralai/Mistral-Small-Instruct-2409", token=HF_TOKEN)
    elif model == "groq":
        return Groq(api_key=GROQ_API_KEY)
    elif model == "mistral":
        return Mistral(api_key=MISTRAL_API_KEY)
    elif CUSTOM_LLM and (model in fetch_custom_models() or model == CUSTOM_LLM_DEFAULT_MODEL):
        return None  # CustomModel doesn't need a client
    else:
        raise ValueError(f"Unsupported model: {model}")


def chat_function(message: str, history: List[Tuple[str, str]], only_web_search: bool, num_results: int, max_chars: int, time_range: str, language: str, category: str, engines: List[str], safesearch: int, method: str, llm_temperature: float, model: str, use_pydf2: bool):
    chat_history = "\n".join([f"{role}: {msg}" for role, msg in history])
    
    # Create the appropriate AI model
    ai_model = AIModelFactory.create_model(model, get_client_for_model(model))
    
    if only_web_search:
        query_type = "web_search"
    else:
        query_type = determine_query_type(message, chat_history, ai_model)
    
    if query_type == "knowledge_base":
        response = generate_ai_response(message, chat_history, ai_model, llm_temperature)
    else:  # web_search
        gr.Info("Initiating Web Search")
        yield "Request you to sit back and relax until I scrape the web for up-to-date information"
        response = search_and_scrape(
            query=message,
            chat_history=chat_history,
            ai_model=ai_model,
            num_results=num_results,
            max_chars=max_chars,
            time_range=time_range,
            language=language,
            category=category,
            engines=engines,
            safesearch=safesearch,
            method=method,
            llm_temperature=llm_temperature,
            model=model,
            use_pydf2=use_pydf2
        )
    
    yield response

iface = gr.ChatInterface(
    chat_function,
    title="Web Scraper for News with Sentinel AI",
    description="Ask Sentinel any question. It will search the web for recent information or use its knowledge base as appropriate.",
    theme=gr.Theme.from_hub("allenai/gradio-theme"),
    additional_inputs=[
        gr.Checkbox(label="Only do web search", value=False),  # Add this line
        gr.Slider(5, 20, value=3, step=1, label="Number of initial results"),
        gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"),
        gr.Dropdown(["", "day", "week", "month", "year"], value="week", label="Time Range"),
        gr.Dropdown(["", "all", "en", "fr", "de", "es", "it", "nl", "pt", "pl", "ru", "zh"], value="en", label="Language"),
        gr.Dropdown(["", "general", "news", "images", "videos", "music", "files", "it", "science", "social media"], value="general", label="Category"),
        gr.Dropdown(
            ["google", "bing", "duckduckgo", "baidu", "yahoo", "qwant", "startpage"],
            multiselect=True,
            value=["google", "duckduckgo", "bing", "qwant"],
            label="Engines"
        ),
        gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"),
        gr.Radio(["GET", "POST"], value="POST", label="HTTP Method"),
        gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"),
        gr.Dropdown(all_models, value=default_model, label="LLM Model"),
        gr.Checkbox(label="Use PyPDF2 for PDF scraping", value=True),
    ],
    additional_inputs_accordion=gr.Accordion("⚙️ Advanced Parameters", open=True),
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    chatbot=gr.Chatbot(
        show_copy_button=True,
        likeable=True,
        layout="bubble",
        height=500,
    )
)

if __name__ == "__main__":
    logger.info("Starting the SearXNG Scraper for News using ChatInterface with Advanced Parameters")
    iface.launch(share=False)