File size: 7,563 Bytes
8f3ce4a 0e9b799 8f3ce4a b8a0c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
title: SearXNG Web Search
emoji: 💬
colorFrom: yellow
colorTo: purple
sdk: gradio
sdk_version: 4.36.1
app_file: app.py
pinned: false
license: apache-2.0
---
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
# Web Scraper for Financial News with Sentinel AI
## Table of Contents
1. [Overview](#overview)
2. [Core Components](#core-components)
- [Search Engine Integration](#search-engine-integration)
- [AI Models Integration](#ai-models-integration)
- [Content Processing](#content-processing)
3. [Key Features](#key-features)
- [Intelligent Query Processing](#intelligent-query-processing)
- [Content Analysis](#content-analysis)
- [Search Optimization](#search-optimization)
4. [Architecture](#architecture)
- [User Interface (UI)](#user-interface-ui)
- [Query Processing](#query-processing)
- [Search Engine](#search-engine)
- [Content Analysis](#content-analysis)
- [Ranking System](#ranking-system)
- [Response Generation](#response-generation)
- [Core Classes](#core-classes)
5. [Main Functions](#main-functions)
6. [API Integration](#api-integration)
8. [Advanced Parameters](#advanced-parameters)
## 1. Overview
This application is a sophisticated web scraper and AI-powered chat interface specifically designed for financial news analysis. It combines web scraping capabilities with multiple Language Learning Models (LLMs) to provide intelligent, context-aware responses to user queries about financial information.
## 2. Core Components
### Search Engine Integration
- Uses SearXNG as the primary search meta-engine
- Supports multiple search engines (Google, Bing, DuckDuckGo, etc.)
- Implements custom retry mechanisms and timeout handling
### AI Models Integration
- Supports multiple LLM providers: Hugging Face (Mistral-Small-Instruct), Groq (Llama-3.1-70b), Mistral AI (Open-Mistral-Nemo)
- Implements semantic similarity using Sentence-Transformer
### Content Processing
- PDF processing with PyPDF2
- Web content scraping with Newspaper3k
- BM25 ranking algorithm implementation
- Document deduplication and relevance assessment
## 3. Key Features
### Intelligent Query Processing
- Query type determination (knowledge base vs. web search)
- Query rephrasing for optimal search results
- Entity recognition
- Time-aware query modification
### Content Analysis
- Relevance assessment
- Content summarization
- Semantic similarity comparison
- Document deduplication
- Priority-based content ranking
### Search Optimization
- Custom retry mechanism
- Rate limiting
- Error handling
- Content filtering and validation
## 4. Architecture
### User Interface (UI)
- You start by interacting with a Gradio Chat Interface.
### Query Processing
- Your query is sent to the Query Analysis (QA) section.
- The system then determines the type of query (DT).
- If it's a type that can use a Knowledge Base, it generates an AI response (KB).
- If it requires web searching, it rephrases the query (QR) for web search.
- The system extracts the entity domain (ED) from the rephrased query.
### Search Engine
- The extracted entity domain is sent to the SearXNG Search Engine (SE).
- The search engine returns the search results (SR).
### Content Analysis
- The search results are processed by web scraping (WS).
- If the content is in PDF format, it is scraped using PDF Scraping (PDF).
- If in HTML format, it's scraped using Newspaper3k Scraping (NEWS).
- Relevant content is summarized (DS) and checked for uniqueness (UC).
### Ranking System
- Content is ranked (DR) based on:
- **BM25 Scoring (BM):** A scoring method to rank documents.
- **Semantic Similarity (SS):** How similar the content is to the query.
- The scores are combined (CS) to produce a final ranking (FR).
### Response Generation
- The final ranking is summarized again (FS) to create a final summary.
- The AI-generated response (KB) and final summary (FS) are combined to form the final response.
### Completion
- The final response is sent back to the Gradio Chat Interface (UI) for you to see.
### Core Classes
- **BM25:** Custom implementation for document ranking
- **Search and Scrape Pipeline:** Handles query processing, web search, content scraping, document analysis, and content summarization.
## 5. Main Functions
- **`determine_query_type(query, chat_history, llm_client)`**: Determines whether to use knowledge base or web search based on context.
- **`search_and_scrape(query, chat_history, ...)`**: Main function for web search and content aggregation.
- **`rerank_documents_with_priority(query, documents, entity_domain, ...)`**: Hybrid ranking using BM25 and semantic similarity.
- **`llm_summarize(json_input, model, temperature)`**: Generates summaries using the specified LLM and handles citation and formatting.
## 6. API Integration
- **Required API Keys**: Hugging Face, Groq, Mistral, SearXNG
- **Environment Variables Setup**: Use dotenv to load environment variables
## 8. Advanced Parameters
| **Parameter** | **Description** | **Range/Options** | **Default** | **Usage** |
|--------------------------|---------------------------------------------------------------|--------------------------------------------|---------------|---------------------------------------------------------------|
| **Number of Results** | Number of search results retrieved. | 5 to 20 | 5 | Controls number of links/articles fetched from web searches. |
| **Maximum Characters** | Limits characters per document processed. | 500 to 10,000 | 3000 | Truncates long documents, focusing on relevant information. |
| **Time Range** | Specifies the time period for search results. | day, week, month, year | month | Filters results based on recent or historical data. |
| **Language Selection** | Filters search results by language. | `en`, `fr`, `es`, etc. | `en` | Retrieves content in a specified language. |
| **LLM Temperature** | Controls randomness in responses from LLM. | 0.0 to 1.0 | 0.2 | Low values for factual responses; higher for creative ones. |
| **Search Engines** | Specifies search engines used for scraping. | Google, Bing, DuckDuckGo, etc. | All engines | Choose specific search engines for better or private results. |
| **Safe Search Level** | Filters explicit/inappropriate content. | 0: No filter, 1: Moderate, 2: Strict | 2 (Strict) | Ensures family-friendly or professional content. |
| **Model Selection** | Chooses the LLM for summaries or responses. | Mistral, GPT-4, Groq | Varies | Select models based on performance or speed. |
| **PDF Processing Toggle** | Enables/disables PDF document processing. | `True` (process) or `False` (skip) | `False` | Processes PDFs, useful for reports but may slow down speed. |
|