File size: 32,804 Bytes
33f1e50
72ddedb
33f1e50
 
 
 
 
d07bea9
9988100
33f1e50
72ddedb
33f1e50
 
 
 
 
 
 
218de65
90e8b4f
6773bde
a5594d9
 
 
b688d25
e181e71
1a8ea50
567f2c0
 
 
27f1192
ec64596
e181e71
 
 
72ddedb
33f1e50
 
 
 
 
 
 
 
 
 
 
 
6773bde
33f1e50
d0bc86a
33f1e50
 
 
1a8ea50
 
 
 
1e878de
1a8ea50
567f2c0
 
 
 
33f1e50
 
72ddedb
 
ec64596
1a40e01
ec64596
6759c67
1a40e01
 
 
 
 
ec64596
6759c67
 
1a40e01
 
 
6759c67
1a40e01
6759c67
 
 
ec64596
 
1a40e01
ec64596
 
 
1a40e01
 
ec64596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a40e01
ec64596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33f1e50
 
c17888a
 
33f1e50
 
72ddedb
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5594d9
b577b65
a5594d9
 
 
 
 
 
 
 
 
 
 
b577b65
a5594d9
 
 
 
 
 
 
b577b65
a5594d9
b577b65
6773bde
 
a5594d9
 
 
6773bde
6c48447
a5594d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c48447
f57b788
6c48447
6773bde
33f1e50
e181e71
c476da1
 
a0f74b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c476da1
 
a0f74b4
c476da1
e181e71
c476da1
a0f74b4
 
 
 
c476da1
a0f74b4
e181e71
 
c476da1
a0f74b4
c476da1
e181e71
c476da1
33f1e50
120e548
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ddedb
27f1192
 
 
 
 
 
 
33f1e50
 
 
 
 
 
 
e181e71
33f1e50
 
 
 
 
 
e181e71
 
72ddedb
27f1192
 
33f1e50
e181e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33f1e50
 
e181e71
33f1e50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e181e71
33f1e50
c51303e
33f1e50
 
e181e71
33f1e50
e181e71
33f1e50
c51303e
e181e71
 
 
 
 
 
 
c51303e
33f1e50
c51303e
 
e181e71
33f1e50
e181e71
c51303e
 
 
 
 
 
 
 
33f1e50
 
e181e71
c51303e
0c8a7e0
 
33f1e50
 
 
c51303e
 
1aa2150
eaf3dee
33f1e50
 
 
a5594d9
 
eaf3dee
 
 
 
 
c6a0be6
9b298f8
 
c6a0be6
b577b65
 
a5594d9
 
 
33f1e50
 
 
 
1a8ea50
e4b2310
33f1e50
e4b2310
 
 
 
10f2ed2
 
 
 
 
 
 
 
 
 
 
 
 
33f1e50
 
 
 
 
1a8ea50
 
 
ead0fa7
a0f74b4
1a8ea50
 
128980b
1a8ea50
 
 
567f2c0
 
d0bc86a
567f2c0
00a13ce
567f2c0
 
 
 
 
 
1a8ea50
 
 
 
 
 
 
 
33f1e50
 
 
 
1e878de
eaf3dee
b864c9d
33f1e50
 
 
 
 
 
 
 
27f1192
 
 
 
 
1e878de
 
 
 
 
 
 
 
 
 
b864c9d
1e878de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33f1e50
4706059
 
 
1e878de
 
33f1e50
1e878de
 
 
b864c9d
1e878de
 
 
 
 
 
 
 
 
 
33f1e50
1e878de
 
b864c9d
1e878de
 
 
 
33f1e50
2b68ba8
07efc76
 
 
1e878de
07efc76
 
 
 
 
 
 
a5594d9
07efc76
eaf3dee
 
 
 
07efc76
 
6773bde
9988100
07efc76
 
 
 
a5594d9
1e878de
07efc76
 
 
 
 
 
4706059
1e878de
33f1e50
 
 
 
 
4706059
 
27f1192
c51303e
 
 
 
 
e181e71
c51303e
 
 
 
27f1192
 
c51303e
 
 
 
27f1192
 
c51303e
 
 
 
 
33f1e50
 
c51303e
33f1e50
27f1192
 
33f1e50
 
 
 
 
 
 
9b298f8
 
 
 
 
 
e4b2310
 
 
 
 
 
 
9b298f8
e4b2310
 
 
1a8ea50
0d492ce
1a8ea50
 
33f1e50
 
 
218de65
 
33f1e50
ec64596
33f1e50
 
ec64596
 
 
 
 
9a34e6e
 
ec64596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b298f8
b4f5c22
33f1e50
4d25f90
33f1e50
 
4d25f90
 
120e548
72ddedb
33f1e50
c17888a
3a81b27
 
33f1e50
 
 
 
3a81b27
33f1e50
72ddedb
33f1e50
 
 
346e799
 
72ddedb
33f1e50
 
 
 
 
 
 
 
6552a74
33f1e50
72ddedb
 
 
33f1e50
84a4885
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
import requests
import gradio as gr
from bs4 import BeautifulSoup
import logging
from urllib.parse import urlparse
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from requests.exceptions import Timeout
from urllib.request import urlopen, Request
import json
from huggingface_hub import InferenceClient
import random
import time
from sentence_transformers import SentenceTransformer, util
import torch
from datetime import datetime
import os
from dotenv import load_dotenv
import certifi
import requests
from newspaper import Article
import PyPDF2
import io
import requests
import random
import datetime
from groq import Groq
import os
from mistralai import Mistral
from dotenv import load_dotenv
import re
from typing import List, Tuple

# Automatically get the current year
current_year = datetime.datetime.now().year

# Load environment variables from a .env file
load_dotenv()

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# SearXNG instance details
SEARXNG_URL = 'https://shreyas094-searxng-local.hf.space/search'
SEARXNG_KEY = 'f9f07f93b37b8483aadb5ba717f556f3a4ac507b281b4ca01e6c6288aa3e3ae5'

# Use the environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
client = InferenceClient(
    "mistralai/Mistral-Small-Instruct-2409",
    token=HF_TOKEN,
)

# Default API key for examples (replace with a dummy value or leave empty)
GROQ_API_KEY = os.getenv("GROQ_API_KEY")

# Initialize Groq client
groq_client = Groq(api_key=GROQ_API_KEY)

# Initialize Mistral client
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
mistral_client = Mistral(api_key=MISTRAL_API_KEY)

# Initialize the similarity model
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')


def determine_query_type(query: str, chat_history: str, llm_client) -> str:
    system_prompt = """You are Sentinel, an intelligent AI agent tasked with determining whether a user query requires a web search or can be answered using your existing knowledge base. Your knowledge cutoff date is 2023, and the current year is 2024. Your task is to analyze the query and decide on the appropriate action.

    Instructions for Sentinel:
    1. If the query is a general conversation starter, greeting, or can be answered with information from 2023 or earlier, classify it as "knowledge_base".
    2. If the query requires information from 2024, up-to-date news, current events, or real-time data, classify it as "web_search".
    3. For queries about ongoing events, trends, or situations that likely have significant updates in 2024, classify as "web_search".
    4. Consider the chat history when making your decision.
    5. Respond with ONLY "knowledge_base" or "web_search".

    Instructions for users (include this in your first interaction):
    "Hello! I'm Sentinel, your AI assistant. I can help you with various tasks and answer your questions. Here's how to get the best results:
    - My knowledge base is current up to 2023. For information up to that year, I can answer directly.
    - For any information, events, or data from 2024 onwards, I'll need to search the web for the most up-to-date results.
    - If you're asking about ongoing situations or need the very latest information, please mention that you need current data.
    - Feel free to ask follow-up questions or request clarification on any topic.
    - If you're unsure whether I need to search, you can ask 'Do you need to search the web for this?'

    How can I assist you today?"

    Examples:
    - "Hi, how are you?" -> "knowledge_base"
    - "What were the major events of 2023?" -> "knowledge_base"
    - "What's the latest news in the US?" -> "web_search"
    - "Can you explain quantum computing?" -> "knowledge_base"
    - "What are the current stock prices for Apple?" -> "web_search"
    - "Who won the 2024 Super Bowl?" -> "web_search"
    - "What were the key findings of the 2022 climate report?" -> "knowledge_base"
    """

    user_prompt = f"""
    Chat history:
    {chat_history}

    Current query: {query}

    Determine if this query requires a web search or can be answered from the knowledge base.
    """

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]

    try:
        response = llm_client.chat_completion(
            messages=messages,
            max_tokens=10,
            temperature=0.2
        )
        decision = response.choices[0].message.content.strip().lower()
        return "web_search" if decision == "web_search" else "knowledge_base"
    except Exception as e:
        logger.error(f"Error determining query type: {e}")
        return "web_search"  # Default to web search if there's an error

def generate_ai_response(query: str, chat_history: str, llm_client, model: str) -> str:
    system_prompt = """You are a helpful AI assistant. Provide a concise and informative response to the user's query based on your existing knowledge. Do not make up information or claim to have real-time data."""

    user_prompt = f"""
    Chat history:
    {chat_history}

    Current query: {query}

    Please provide a response to the query.
    """

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]

    try:
        if model == "groq":
            response = groq_client.chat.completions.create(
                messages=messages,
                model="llama-3.1-70b-instant",
                max_tokens=500,
                temperature=0.7
            )
            return response.choices[0].message.content.strip()
        elif model == "mistral":
            response = mistral_client.chat.complete(
                model="open-mistral-nemo",
                messages=messages,
                max_tokens=500,
                temperature=0.7
            )
            return response.choices[0].message.content.strip()
        else:  # huggingface
            response = llm_client.chat_completion(
                messages=messages,
                max_tokens=500,
                temperature=0.7
            )
            return response.choices[0].message.content.strip()
    except Exception as e:
        logger.error(f"Error generating AI response: {e}")
        return "I apologize, but I'm having trouble generating a response at the moment. Please try again later."


# Set up a session with retry mechanism
def requests_retry_session(
    retries=0,
    backoff_factor=0.1,
    status_forcelist=(500, 502, 504),
    session=None,
):
    session = session or requests.Session()
    retry = Retry(
        total=retries,
        read=retries,
        connect=retries,
        backoff_factor=backoff_factor,
        status_forcelist=status_forcelist,
    )
    adapter = HTTPAdapter(max_retries=retry)
    session.mount('http://', adapter)
    session.mount('https://', adapter)
    return session

def is_valid_url(url):
    try:
        result = urlparse(url)
        return all([result.scheme, result.netloc])
    except ValueError:
        return False

def scrape_pdf_content(url, max_chars=3000, timeout=5):
    try:
        logger.info(f"Scraping PDF content from: {url}")
        
        # Download the PDF file
        response = requests.get(url, timeout=timeout)
        response.raise_for_status()
        
        # Create a PDF reader object
        pdf_reader = PyPDF2.PdfReader(io.BytesIO(response.content))
        
        # Extract text from all pages
        content = ""
        for page in pdf_reader.pages:
            content += page.extract_text() + "\n"
        
        # Limit the content to max_chars
        return content[:max_chars] if content else ""
    except requests.Timeout:
        logger.error(f"Timeout error while scraping PDF content from {url}")
        return ""
    except Exception as e:
        logger.error(f"Error scraping PDF content from {url}: {e}")
        return ""

def scrape_with_newspaper(url):
    if url.lower().endswith('.pdf'):
        return scrape_pdf_content(url)
    
    logger.info(f"Starting to scrape with Newspaper3k: {url}")
    try:
        article = Article(url)
        article.download()
        article.parse()
        
        # Combine title and text
        content = f"Title: {article.title}\n\n"
        content += article.text
        
        # Add publish date if available
        if article.publish_date:
            content += f"\n\nPublish Date: {article.publish_date}"
        
        # Add authors if available
        if article.authors:
            content += f"\n\nAuthors: {', '.join(article.authors)}"
        
        # Add top image URL if available
        if article.top_image:
            content += f"\n\nTop Image URL: {article.top_image}"
        
        return content
    except Exception as e:
        logger.error(f"Error scraping {url} with Newspaper3k: {e}")
        return ""

def rephrase_query(chat_history, query, temperature=0.2):
    system_prompt = f"""
You are a highly intelligent and context-aware conversational assistant. Your tasks are as follows:

1. Determine if the new query is a continuation of the previous conversation or an entirely new topic.

2. For both continuations and new topics:
   a. **Entity Identification and Quotation**:
      - Analyze the user's query to identify the main entities (e.g., organizations, brands, products, locations).
      - For each identified entity, enclose ONLY the entity itself in double quotes within the query.
      - If no identifiable entities are found, proceed without adding quotes.
   b. **Query Preservation**:
      - Maintain the entire original query, including any parts after commas or other punctuation.
      - Do not remove or truncate any part of the original query.

3. If it's a continuation:
   - Incorporate relevant information from the context to make the query more specific and contextual.
   - Ensure that entities from the previous context are properly quoted if they appear in the rephrased query.

4. For both continuations and new topics:
   - Append "after: {current_year}" to the end of the rephrased query.
   - Ensure there is a space before "after:" for proper formatting.
   - Do not use quotes or the "+" operator when adding the year.

5. **Output**:
   - Return ONLY the rephrased query, ensuring it is concise, clear, and contextually accurate.
   - Do not include any additional commentary or explanation.

### Example Scenarios
**Scenario 1: New Topic**
- **User Query**: "What is the latest news on Golomt Bank?"
- **Rephrased Query**: "What is the latest news on \"Golomt Bank\" after: {current_year}"

**Scenario 2: Continuation**
- **Previous Query**: "What is the latest news on Golomt Bank?"
- **User Query**: "How did the Bank perform in Q2 2024?"
- **Rephrased Query**: "How did \"Golomt Bank\" perform in Q2 2024 after: {current_year}"

**Scenario 3: Query with Multiple Entities and Comma**
- **User Query**: "What is the latest news about Prospect Capital, did the rating change?"
- **Rephrased Query**: "What is the latest news about \"Prospect Capital\", did the rating change after: {current_year}"

**Scenario 4: Query Without Recognizable Entities**
- **User Query**: "How does photosynthesis work?"
- **Rephrased Query**: "How does photosynthesis work? after: {current_year}"
"""
    user_prompt = f"""
Conversation context:
{chat_history}
New query: {query}
Rephrased query:
"""
    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]
    try:
        logger.info(f"Sending rephrasing request to LLM with temperature {temperature}")
        response = client.chat_completion(
            messages=messages,
            max_tokens=150,
            temperature=temperature
        )
        logger.info("Received rephrased query from LLM")
        rephrased_question = response.choices[0].message.content.strip()
        # Remove surrounding quotes if present
        if (rephrased_question.startswith('"') and rephrased_question.endswith('"')) or \
           (rephrased_question.startswith("'") and rephrased_question.endswith("'")):
            rephrased_question = rephrased_question[1:-1].strip()
        logger.info(f"Rephrased Query (cleaned): {rephrased_question}")
        return rephrased_question
    except Exception as e:
        logger.error(f"Error rephrasing query with LLM: {e}")
        return query  # Fallback to original query if rephrasing fails

def extract_entity_domain(query):
    # Use a simple regex pattern to extract domain names from the query
    domain_pattern = r'\b(?:https?://)?(?:www\.)?([a-zA-Z0-9-]+(?:\.[a-zA-Z0-9-]+)+)\b'
    matches = re.findall(domain_pattern, query)
    return matches[0] if matches else None

def rerank_documents_with_priority(query, documents, entity_domain, similarity_threshold=0.95, max_results=5):
    try:
        # Step 1: Encode the query and document summaries
        query_embedding = similarity_model.encode(query, convert_to_tensor=True)
        doc_summaries = [doc['summary'] for doc in documents]
        
        if not doc_summaries:
            logger.warning("No document summaries to rerank.")
            return documents
        
        doc_embeddings = similarity_model.encode(doc_summaries, convert_to_tensor=True)
        
        # Step 2: Compute Cosine Similarity
        cosine_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
        
        # Combine documents and cosine scores
        scored_documents = list(zip(documents, cosine_scores))

        # Step 3: Sort documents by cosine similarity score and prioritize entity domain
        scored_documents.sort(key=lambda x: (not x[0]['is_entity_domain'], -x[1]), reverse=False)
        
        # Step 4: Filter out similar documents
        filtered_docs = []
        for doc, score in scored_documents:
            if score < 0.5:  # If similarity to query is too low, skip
                continue
            
            # Check similarity with already selected documents
            is_similar = False
            for selected_doc in filtered_docs:
                similarity = util.pytorch_cos_sim(
                    similarity_model.encode(doc['summary'], convert_to_tensor=True),
                    similarity_model.encode(selected_doc['summary'], convert_to_tensor=True)
                )
                if similarity > similarity_threshold:
                    is_similar = True
                    break
            
            if not is_similar:
                filtered_docs.append(doc)
            
            if len(filtered_docs) >= max_results:
                break
        
        logger.info(f"Reranked and filtered to {len(filtered_docs)} unique documents.")
        return filtered_docs
    except Exception as e:
        logger.error(f"Error during reranking documents: {e}")
        return documents[:max_results]  # Fallback to first max_results documents if reranking fails

def compute_similarity(text1, text2):
    # Encode the texts
    embedding1 = similarity_model.encode(text1, convert_to_tensor=True)
    embedding2 = similarity_model.encode(text2, convert_to_tensor=True)
    
    # Compute cosine similarity
    cosine_similarity = util.pytorch_cos_sim(embedding1, embedding2)
    
    return cosine_similarity.item()

def is_content_unique(new_content, existing_contents, similarity_threshold=0.8):
    for existing_content in existing_contents:
        similarity = compute_similarity(new_content, existing_content)
        if similarity > similarity_threshold:
            return False
    return True

def assess_relevance_and_summarize(llm_client, query, document, temperature=0.2):
    system_prompt = """You are a world-class AI assistant specializing in financial news analysis. Your task is to assess the relevance of a given document to a user's query and provide a detailed summary if it's relevant."""

    user_prompt = f"""
Query: {query}

Document Title: {document['title']}
Document Content:
{document['content'][:1000]}  # Limit to first 1000 characters for efficiency

Instructions:
1. Assess if the document is relevant to the QUERY made by the user.
2. If relevant, provide a detailed summary that captures the unique aspects of this particular news item. Include:
   - Key facts and figures
   - Dates of events or announcements
   - Names of important entities mentioned
   - Any financial metrics or changes reported
   - The potential impact or significance of the news
3. If not relevant, simply state "Not relevant".

Your response should be in the following format:
Relevant: [Yes/No]
Summary: [Your detailed summary if relevant, or "Not relevant" if not]

Remember to focus on financial aspects and implications in your assessment and summary. Aim to make the summary distinctive, highlighting what makes this particular news item unique compared to similar news.
"""

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]

    try:
        response = llm_client.chat_completion(
            messages=messages,
            max_tokens=300,  # Increased to allow for more detailed summaries
            temperature=temperature,
            top_p=0.9,
            frequency_penalty=1.4
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        logger.error(f"Error assessing relevance and summarizing with LLM: {e}")
        return "Error: Unable to assess relevance and summarize"

def scrape_full_content(url, max_chars=3000, timeout=5, use_pydf2=True):
    try:
        logger.info(f"Scraping full content from: {url}")
        
        # Check if the URL ends with .pdf
        if url.lower().endswith('.pdf'):
            if use_pydf2:
                return scrape_pdf_content(url, max_chars, timeout)
            else:
                logger.info(f"Skipping PDF document: {url}")
                return None
        
        # Use Newspaper3k for non-PDF content
        content = scrape_with_newspaper(url)
        
        # Limit the content to max_chars
        return content[:max_chars] if content else ""
    except requests.Timeout:
        logger.error(f"Timeout error while scraping full content from {url}")
        return ""
    except Exception as e:
        logger.error(f"Error scraping full content from {url}: {e}")
        return ""

def llm_summarize(json_input, model, temperature=0.2):
    system_prompt = """You are Sentinel, a world-class Financial analysis AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them."""
    user_prompt = f"""
Please provide a comprehensive summary based on the following JSON input:
{json_input}
Instructions:
1. Analyze the query and the provided documents.
2. Write a detailed, long, and complete research document that is informative and relevant to the user's query based on provided context (the context consists of search results containing a brief description of the content of that page).
3. You must use this context to answer the user's query in the best way possible. Use an unbiased and journalistic tone in your response. Do not repeat the text.
4. Use an unbiased and professional tone in your response.
5. Do not repeat text verbatim from the input.
6. Provide the answer in the response itself.
7. You can use markdown to format your response.
8. Use bullet points to list information where appropriate.
9. Cite the answer using [number] notation along with the appropriate source URL embedded in the notation.
10. Place these citations at the end of the relevant sentences.
11. You can cite the same sentence multiple times if it's relevant to different parts of your answer.
12. Make sure the answer is not short and is informative.
13. Your response should be detailed, informative, accurate, and directly relevant to the user's query."""
    
    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]
    try:
        if model == "groq":
            response = groq_client.chat.completions.create(
                messages=messages,
                model="llama-3.1-70b-versatile",
                max_tokens=5500,
                temperature=temperature,
                top_p=0.9,
                presence_penalty=1.2,
                stream=False
            )
            return response.choices[0].message.content.strip()
        elif model == "mistral":
            response = mistral_client.chat.complete(
                model="open-mistral-nemo",
                messages=messages,
                max_tokens=10000,
                temperature=temperature,
                top_p=0.9,
                stream=False
            )
            return response.choices[0].message.content.strip()
        else:  # huggingface
            response = client.chat_completion(
                messages=messages,
                max_tokens=10000,
                temperature=temperature,
                frequency_penalty=1.4,
                top_p=0.9
            )
            return response.choices[0].message.content.strip()
    except Exception as e:
        logger.error(f"Error in LLM summarization: {e}")
        return "Error: Unable to generate a summary. Please try again."

def search_and_scrape(query, chat_history, num_results=5, max_chars=3000, time_range="", language="all", category="", 
                      engines=[], safesearch=2, method="GET", llm_temperature=0.2, timeout=5, model="huggingface", use_pydf2=True):   
    try:
        # Step 1: Rephrase the Query
        rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature)
        logger.info(f"Rephrased Query: {rephrased_query}")

        if not rephrased_query or rephrased_query.lower() == "not_needed":
            logger.info("No need to perform search based on the rephrased query.")
            return "No search needed for the provided input."

        # Step 2: Extract entity domain
        entity_domain = extract_entity_domain(rephrased_query)
        logger.info(f"Extracted entity domain: {entity_domain}")

        # Step 3: Perform search
        # Search query parameters
        params = {
            'q': rephrased_query,
            'format': 'json',
            'time_range': time_range,
            'language': language,
            'category': category,
            'engines': ','.join(engines),
            'safesearch': safesearch
        }

        # Remove empty parameters
        params = {k: v for k, v in params.items() if v != ""}

        # If no engines are specified, set default engines
        if 'engines' not in params:
            params['engines'] = 'google'  # Default to 'google' or any preferred engine
            logger.info("No engines specified. Defaulting to 'google'.")

        # Headers for SearXNG request
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
            'Accept': 'application/json, text/javascript, */*; q=0.01',
            'Accept-Language': 'en-US,en;q=0.5',
            'Origin': 'https://shreyas094-searxng-local.hf.space',
            'Referer': 'https://shreyas094-searxng-local.hf.space/',
            'DNT': '1',
            'Connection': 'keep-alive',
            'Sec-Fetch-Dest': 'empty',
            'Sec-Fetch-Mode': 'cors',
            'Sec-Fetch-Site': 'same-origin',
        }

        scraped_content = []
        page = 1
        while len(scraped_content) < num_results:
            # Update params with current page
            params['pageno'] = page

            # Send request to SearXNG
            logger.info(f"Sending request to SearXNG for query: {rephrased_query} (Page {page})")
            session = requests_retry_session()

            try:
                if method.upper() == "GET":
                    response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where())
                else:  # POST
                    response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where())
                
                response.raise_for_status()
            except requests.exceptions.RequestException as e:
                logger.error(f"Error during SearXNG request: {e}")
                return f"An error occurred during the search request: {e}"

            search_results = response.json()
            logger.debug(f"SearXNG Response: {search_results}")

            results = search_results.get('results', [])
            if not results:
                logger.warning(f"No more results returned from SearXNG on page {page}.")
                break

            for result in results:
                if len(scraped_content) >= num_results:
                    break
        
                url = result.get('url', '')
                title = result.get('title', 'No title')
        
                if not is_valid_url(url):
                    logger.warning(f"Invalid URL: {url}")
                    continue
        
                try:
                    logger.info(f"Processing content from: {url}")
                    
                    content = scrape_full_content(url, max_chars, timeout, use_pydf2)
                    
                    if content is None:  # This means it's a PDF and use_pydf2 is False
                        continue
                    
                    if not content:
                        logger.warning(f"Failed to scrape content from {url}")
                        continue
                    
                    scraped_content.append({
                        "title": title,
                        "url": url,
                        "content": content,
                        "scraper": "pdf" if url.lower().endswith('.pdf') else "newspaper"
                    })
                    logger.info(f"Successfully scraped content from {url}. Total scraped: {len(scraped_content)}")
                except requests.exceptions.RequestException as e:
                    logger.error(f"Error scraping {url}: {e}")
                except Exception as e:
                    logger.error(f"Unexpected error while scraping {url}: {e}")

            page += 1

        if not scraped_content:
            logger.warning("No content scraped from search results.")
            return "No content could be scraped from the search results."

        logger.info(f"Successfully scraped {len(scraped_content)} documents.")

         # Step 4: Assess relevance, summarize, and check for uniqueness
        relevant_documents = []
        unique_summaries = []
        for doc in scraped_content:
            assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature)
            relevance, summary = assessment.split('\n', 1)

            if relevance.strip().lower() == "relevant: yes":
                summary_text = summary.replace("Summary: ", "").strip()
                
                if is_content_unique(summary_text, unique_summaries):
                    doc_domain = urlparse(doc['url']).netloc
                    is_entity_domain = doc_domain == entity_domain
                    relevant_documents.append({
                        "title": doc['title'],
                        "url": doc['url'],
                        "summary": summary_text,
                        "scraper": doc['scraper'],
                        "is_entity_domain": is_entity_domain
                    })
                    unique_summaries.append(summary_text)
                else:
                    logger.info(f"Skipping similar content: {doc['title']}")

        if not relevant_documents:
            logger.warning("No relevant and unique documents found.")
            return "No relevant and unique financial news found for the given query."

        # Step 5: Rerank documents based on similarity to query and prioritize entity domain
        reranked_docs = rerank_documents_with_priority(rephrased_query, relevant_documents, entity_domain, similarity_threshold=0.95, max_results=num_results)
        
        if not reranked_docs:
            logger.warning("No documents remained after reranking.")
            return "No relevant financial news found after filtering and ranking."
        
        logger.info(f"Reranked and filtered to top {len(reranked_docs)} unique, finance-related documents.")

        # Step 5: Scrape full content for top documents (up to num_results)
        for doc in reranked_docs[:num_results]:
            full_content = scrape_full_content(doc['url'], max_chars)
            doc['full_content'] = full_content
    
        # Prepare JSON for LLM
        llm_input = {
            "query": query,
            "documents": [
                {
                    "title": doc['title'],
                    "url": doc['url'],
                    "summary": doc['summary'],
                    "full_content": doc['full_content']
                } for doc in reranked_docs[:num_results]
            ]
        }

        # Step 6: LLM Summarization
        llm_summary = llm_summarize(json.dumps(llm_input), model, temperature=llm_temperature)
        
        return llm_summary

    except Exception as e:
        logger.error(f"Unexpected error in search_and_scrape: {e}")
        return f"An unexpected error occurred during the search and scrape process: {e}"

def chat_function(message: str, history: List[Tuple[str, str]], num_results: int, max_chars: int, time_range: str, language: str, category: str, engines: List[str], safesearch: int, method: str, llm_temperature: float, model: str, use_pydf2: bool):
    chat_history = "\n".join([f"{role}: {msg}" for role, msg in history])
    
    query_type = determine_query_type(message, chat_history, client)
    
    if query_type == "knowledge_base":
        response = generate_ai_response(message, chat_history, client, model)
    else:  # web_search
        gr.Info("Initiating Web Search")
        yield "Request you to sit back and relax until I scrape the web for up-to-date information"
        response = search_and_scrape(
            query=message,
            chat_history=chat_history,
            num_results=num_results,
            max_chars=max_chars,
            time_range=time_range,
            language=language,
            category=category,
            engines=engines,
            safesearch=safesearch,
            method=method,
            llm_temperature=llm_temperature,
            model=model,
            use_pydf2=use_pydf2
        )
    
    yield response


iface = gr.ChatInterface(
    chat_function,
    title="Web Scraper for Financial News with Sentinel AI",
    description="Ask Sentinel any question. It will search the web for recent information or use its knowledge base as appropriate.",
    theme=gr.Theme.from_hub("allenai/gradio-theme"),
    additional_inputs=[
        gr.Slider(5, 20, value=10, step=1, label="Number of initial results"),
        gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"),
        gr.Dropdown(["", "day", "week", "month", "year"], value="", label="Time Range"),
        gr.Dropdown(["", "all", "en", "fr", "de", "es", "it", "nl", "pt", "pl", "ru", "zh"], value="", label="Language"),
        gr.Dropdown(["", "general", "news", "images", "videos", "music", "files", "it", "science", "social media"], value="", label="Category"),
        gr.Dropdown(
            ["google", "bing", "duckduckgo", "baidu", "yahoo", "qwant", "startpage"],
            multiselect=True,
            value=["google", "duckduckgo", "bing", "qwant"],
            label="Engines"
        ),
        gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"),
        gr.Radio(["GET", "POST"], value="POST", label="HTTP Method"),
        gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"),
        gr.Dropdown(["huggingface", "groq", "mistral"], value="mistral", label="LLM Model"),
        gr.Checkbox(label="Use PyPDF2 for PDF scraping", value=False),
    ],
    additional_inputs_accordion=gr.Accordion("⚙️ Advanced Parameters", open=True),
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    chatbot=gr.Chatbot(
        show_copy_button=True,
        likeable=True,
        layout="bubble",
        height=500,
    )
)

if __name__ == "__main__":
    logger.info("Starting the SearXNG Scraper for Financial News using ChatInterface with Advanced Parameters")
    iface.launch(share=True)