Shreyas094's picture
Update app.py
05d20f1 verified
raw
history blame
35.6 kB
import requests
import gradio as gr
from bs4 import BeautifulSoup
import logging
from urllib.parse import urlparse
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from requests.exceptions import Timeout
from urllib.request import urlopen, Request
import json
from huggingface_hub import InferenceClient
import random
import time
from sentence_transformers import SentenceTransformer, util
import torch
from datetime import datetime
import os
from dotenv import load_dotenv
import certifi
import requests
from newspaper import Article
import PyPDF2
import io
import requests
import random
import datetime
from groq import Groq
import os
from mistralai import Mistral
from dotenv import load_dotenv
import re
from typing import List, Tuple
# Automatically get the current year
current_year = datetime.datetime.now().year
# Load environment variables from a .env file
load_dotenv()
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# SearXNG instance details
SEARXNG_URL = 'https://shreyas094-searxng-local.hf.space/search'
SEARXNG_KEY = 'f9f07f93b37b8483aadb5ba717f556f3a4ac507b281b4ca01e6c6288aa3e3ae5'
# Use the environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
client = InferenceClient(
"mistralai/Mistral-Small-Instruct-2409",
token=HF_TOKEN,
)
# Default API key for examples (replace with a dummy value or leave empty)
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Initialize Groq client
groq_client = Groq(api_key=GROQ_API_KEY)
# Initialize Mistral client
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
mistral_client = Mistral(api_key=MISTRAL_API_KEY)
# Initialize the similarity model
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
def determine_query_type(query: str, chat_history: str, llm_client) -> str:
system_prompt = """You are Sentinel, an intelligent AI agent tasked with determining whether a user query requires a web search or can be answered using your existing knowledge base. Your knowledge cutoff date is 2023, and the current year is 2024. Your task is to analyze the query and decide on the appropriate action.
Instructions for Sentinel:
1. If the query is a general conversation starter, greeting, or can be answered with information from 2023 or earlier, classify it as "knowledge_base".
2. If the query requires information from 2024, up-to-date news, current events, or real-time data, classify it as "web_search".
3. For queries about ongoing events, trends, or situations that likely have significant updates in 2024, classify as "web_search".
4. Consider the chat history when making your decision.
5. Respond with ONLY "knowledge_base" or "web_search".
Instructions for users (include this in your first interaction):
"Hello! I'm Sentinel, your AI assistant. I can help you with various tasks and answer your questions. Here's how to get the best results:
- My knowledge base is current up to 2023. For information up to that year, I can answer directly.
- For any information, events, or data from 2024 onwards, I'll need to search the web for the most up-to-date results.
- If you're asking about ongoing situations or need the very latest information, please mention that you need current data.
- Feel free to ask follow-up questions or request clarification on any topic.
- If you're unsure whether I need to search, you can ask 'Do you need to search the web for this?'
How can I assist you today?"
Examples:
- "Hi, how are you?" -> "knowledge_base"
- "What were the major events of 2023?" -> "knowledge_base"
- "What's the latest news in the US?" -> "web_search"
- "Can you explain quantum computing?" -> "knowledge_base"
- "What are the current stock prices for Apple?" -> "web_search"
- "Who won the 2024 Super Bowl?" -> "web_search"
- "What were the key findings of the 2022 climate report?" -> "knowledge_base"
"""
user_prompt = f"""
Chat history:
{chat_history}
Current query: {query}
Determine if this query requires a web search or can be answered from the knowledge base.
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
response = llm_client.chat_completion(
messages=messages,
max_tokens=10,
temperature=0.2
)
decision = response.choices[0].message.content.strip().lower()
return "web_search" if decision == "web_search" else "knowledge_base"
except Exception as e:
logger.error(f"Error determining query type: {e}")
return "web_search" # Default to web search if there's an error
def generate_ai_response(query: str, chat_history: str, llm_client, model: str) -> str:
system_prompt = """You are a helpful AI assistant. Provide a concise and informative response to the user's query based on your existing knowledge. Do not make up information or claim to have real-time data."""
user_prompt = f"""
Chat history:
{chat_history}
Current query: {query}
Please provide a response to the query.
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
if model == "groq":
response = groq_client.chat.completions.create(
messages=messages,
model="llama-3.1-70b-instant",
max_tokens=500,
temperature=0.7
)
return response.choices[0].message.content.strip()
elif model == "mistral":
response = mistral_client.chat.complete(
model="open-mistral-nemo",
messages=messages,
max_tokens=500,
temperature=0.7
)
return response.choices[0].message.content.strip()
else: # huggingface
response = llm_client.chat_completion(
messages=messages,
max_tokens=500,
temperature=0.7
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error generating AI response: {e}")
return "I apologize, but I'm having trouble generating a response at the moment. Please try again later."
# Set up a session with retry mechanism
def requests_retry_session(
retries=0,
backoff_factor=0.1,
status_forcelist=(500, 502, 504),
session=None,
):
session = session or requests.Session()
retry = Retry(
total=retries,
read=retries,
connect=retries,
backoff_factor=backoff_factor,
status_forcelist=status_forcelist,
)
adapter = HTTPAdapter(max_retries=retry)
session.mount('http://', adapter)
session.mount('https://', adapter)
return session
def is_valid_url(url):
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except ValueError:
return False
def scrape_pdf_content(url, max_chars=3000, timeout=5):
try:
logger.info(f"Scraping PDF content from: {url}")
# Download the PDF file
response = requests.get(url, timeout=timeout)
response.raise_for_status()
# Create a PDF reader object
pdf_reader = PyPDF2.PdfReader(io.BytesIO(response.content))
# Extract text from all pages
content = ""
for page in pdf_reader.pages:
content += page.extract_text() + "\n"
# Limit the content to max_chars
return content[:max_chars] if content else ""
except requests.Timeout:
logger.error(f"Timeout error while scraping PDF content from {url}")
return ""
except Exception as e:
logger.error(f"Error scraping PDF content from {url}: {e}")
return ""
def scrape_with_newspaper(url):
if url.lower().endswith('.pdf'):
return scrape_pdf_content(url)
logger.info(f"Starting to scrape with Newspaper3k: {url}")
try:
article = Article(url)
article.download()
article.parse()
# Combine title and text
content = f"Title: {article.title}\n\n"
content += article.text
# Add publish date if available
if article.publish_date:
content += f"\n\nPublish Date: {article.publish_date}"
# Add authors if available
if article.authors:
content += f"\n\nAuthors: {', '.join(article.authors)}"
# Add top image URL if available
if article.top_image:
content += f"\n\nTop Image URL: {article.top_image}"
return content
except Exception as e:
logger.error(f"Error scraping {url} with Newspaper3k: {e}")
return ""
def rephrase_query(chat_history, query, temperature=0.2):
system_prompt = f"""
You are a highly intelligent and context-aware conversational assistant. Your tasks are as follows:
1. Determine if the new query is a continuation of the previous conversation or an entirely new topic.
2. For both continuations and new topics:
a. **Entity Identification and Quotation**:
- Analyze the user's query to identify the main entities (e.g., organizations, brands, products, locations).
- For each identified entity, enclose ONLY the entity itself in double quotes within the query.
- If no identifiable entities are found, proceed without adding quotes.
b. **Query Preservation**:
- Maintain the entire original query, including any parts after commas or other punctuation.
- Do not remove or truncate any part of the original query.
3. If it's a continuation:
- Incorporate relevant information from the context to make the query more specific and contextual.
- Ensure that entities from the previous context are properly quoted if they appear in the rephrased query.
4. For both continuations and new topics:
- Append "after: {current_year}" to the end of the rephrased query.
- Ensure there is a space before "after:" for proper formatting.
- Do not use quotes or the "+" operator when adding the year.
5. **Output**:
- Return ONLY the rephrased query, ensuring it is concise, clear, and contextually accurate.
- Do not include any additional commentary or explanation.
### Example Scenarios
**Scenario 1: New Topic**
- **User Query**: "What is the latest news on Golomt Bank?"
- **Rephrased Query**: "What is the latest news on \"Golomt Bank\" after: {current_year}"
**Scenario 2: Continuation**
- **Previous Query**: "What is the latest news on Golomt Bank?"
- **User Query**: "How did the Bank perform in Q2 2024?"
- **Rephrased Query**: "How did \"Golomt Bank\" perform in Q2 2024 after: {current_year}"
**Scenario 3: Query with Multiple Entities and Comma**
- **User Query**: "What is the latest news about Prospect Capital, did the rating change?"
- **Rephrased Query**: "What is the latest news about \"Prospect Capital\", did the rating change after: {current_year}"
**Scenario 4: Query Without Recognizable Entities**
- **User Query**: "How does photosynthesis work?"
- **Rephrased Query**: "How does photosynthesis work? after: {current_year}"
"""
user_prompt = f"""
Conversation context:
{chat_history}
New query: {query}
Rephrased query:
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
logger.info(f"Sending rephrasing request to LLM with temperature {temperature}")
response = client.chat_completion(
messages=messages,
max_tokens=150,
temperature=temperature
)
logger.info("Received rephrased query from LLM")
rephrased_question = response.choices[0].message.content.strip()
# Remove surrounding quotes if present
if (rephrased_question.startswith('"') and rephrased_question.endswith('"')) or \
(rephrased_question.startswith("'") and rephrased_question.endswith("'")):
rephrased_question = rephrased_question[1:-1].strip()
logger.info(f"Rephrased Query (cleaned): {rephrased_question}")
return rephrased_question
except Exception as e:
logger.error(f"Error rephrasing query with LLM: {e}")
return query # Fallback to original query if rephrasing fails
def extract_entity_domain(query):
# Use a simple regex pattern to extract domain names from the query
domain_pattern = r'\b(?:https?://)?(?:www\.)?([a-zA-Z0-9-]+(?:\.[a-zA-Z0-9-]+)+)\b'
matches = re.findall(domain_pattern, query)
return matches[0] if matches else None
def rerank_documents_with_priority(query, documents, entity_domain, similarity_threshold=0.95, max_results=5):
try:
# Step 1: Encode the query and document summaries
query_embedding = similarity_model.encode(query, convert_to_tensor=True)
doc_summaries = [doc['summary'] for doc in documents]
if not doc_summaries:
logger.warning("No document summaries to rerank.")
return documents
doc_embeddings = similarity_model.encode(doc_summaries, convert_to_tensor=True)
# Step 2: Compute Cosine Similarity
cosine_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
# Combine documents and cosine scores
scored_documents = list(zip(documents, cosine_scores))
# Step 3: Sort documents by cosine similarity score and prioritize entity domain
scored_documents.sort(key=lambda x: (not x[0]['is_entity_domain'], -x[1]), reverse=False)
# Step 4: Filter out similar documents
filtered_docs = []
for doc, score in scored_documents:
if score < 0.5: # If similarity to query is too low, skip
continue
# Check similarity with already selected documents
is_similar = False
for selected_doc in filtered_docs:
similarity = util.pytorch_cos_sim(
similarity_model.encode(doc['summary'], convert_to_tensor=True),
similarity_model.encode(selected_doc['summary'], convert_to_tensor=True)
)
if similarity > similarity_threshold:
is_similar = True
break
if not is_similar:
filtered_docs.append(doc)
if len(filtered_docs) >= max_results:
break
logger.info(f"Reranked and filtered to {len(filtered_docs)} unique documents.")
return filtered_docs
except Exception as e:
logger.error(f"Error during reranking documents: {e}")
return documents[:max_results] # Fallback to first max_results documents if reranking fails
def compute_similarity(text1, text2):
# Encode the texts
embedding1 = similarity_model.encode(text1, convert_to_tensor=True)
embedding2 = similarity_model.encode(text2, convert_to_tensor=True)
# Compute cosine similarity
cosine_similarity = util.pytorch_cos_sim(embedding1, embedding2)
return cosine_similarity.item()
def is_content_unique(new_content, existing_contents, similarity_threshold=0.8):
for existing_content in existing_contents:
similarity = compute_similarity(new_content, existing_content)
if similarity > similarity_threshold:
return False
return True
def assess_relevance_and_summarize(llm_client, query, document, temperature=0.2):
system_prompt = """You are a world-class AI assistant specializing in financial news analysis. Your task is to assess the relevance of a given document to a user's query and provide a detailed summary if it's relevant."""
user_prompt = f"""
Query: {query}
Document Title: {document['title']}
Document Content:
{document['content'][:1000]} # Limit to first 1000 characters for efficiency
Instructions:
1. Assess if the document is relevant to the QUERY made by the user.
2. If relevant, provide a detailed summary that captures the unique aspects of this particular news item. Include:
- Key facts and figures
- Dates of events or announcements
- Names of important entities mentioned
- Any financial metrics or changes reported
- The potential impact or significance of the news
3. If not relevant, simply state "Not relevant".
Your response should be in the following format:
Relevant: [Yes/No]
Summary: [Your detailed summary if relevant, or "Not relevant" if not]
Remember to focus on financial aspects and implications in your assessment and summary. Aim to make the summary distinctive, highlighting what makes this particular news item unique compared to similar news.
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
response = llm_client.chat_completion(
messages=messages,
max_tokens=300, # Increased to allow for more detailed summaries
temperature=temperature,
top_p=0.9,
frequency_penalty=1.4
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error assessing relevance and summarizing with LLM: {e}")
return "Error: Unable to assess relevance and summarize"
def scrape_full_content(url, max_chars=3000, timeout=5, use_pydf2=True):
try:
logger.info(f"Scraping full content from: {url}")
# Check if the URL ends with .pdf
if url.lower().endswith('.pdf'):
if use_pydf2:
return scrape_pdf_content(url, max_chars, timeout)
else:
logger.info(f"Skipping PDF document: {url}")
return None
# Use Newspaper3k for non-PDF content
content = scrape_with_newspaper(url)
# Limit the content to max_chars
return content[:max_chars] if content else ""
except requests.Timeout:
logger.error(f"Timeout error while scraping full content from {url}")
return ""
except Exception as e:
logger.error(f"Error scraping full content from {url}: {e}")
return ""
def llm_summarize(json_input, model, temperature=0.2):
system_prompt = """You are Sentinel, a world-class Financial analysis AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them."""
user_prompt = f"""
Please provide a comprehensive summary based on the following JSON input:
{json_input}
Instructions:
1. Analyze the query and the provided documents.
2. Write a detailed, long, and complete research document that is informative and relevant to the user's query based on provided context (the context consists of search results containing a brief description of the content of that page).
3. You must use this context to answer the user's query in the best way possible. Use an unbiased and journalistic tone in your response. Do not repeat the text.
4. Use an unbiased and professional tone in your response.
5. Do not repeat text verbatim from the input.
6. Provide the answer in the response itself.
7. You can use markdown to format your response.
8. Use bullet points to list information where appropriate.
9. Cite the answer using [number] notation along with the appropriate source URL embedded in the notation.
10. Place these citations at the end of the relevant sentences.
11. You can cite the same sentence multiple times if it's relevant to different parts of your answer.
12. Make sure the answer is not short and is informative.
13. Your response should be detailed, informative, accurate, and directly relevant to the user's query."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
if model == "groq":
response = groq_client.chat.completions.create(
messages=messages,
model="llama-3.1-70b-versatile",
max_tokens=5500,
temperature=temperature,
top_p=0.9,
presence_penalty=1.2,
stream=False
)
return response.choices[0].message.content.strip()
elif model == "mistral":
response = mistral_client.chat.complete(
model="open-mistral-nemo",
messages=messages,
max_tokens=10000,
temperature=temperature,
top_p=0.9,
stream=False
)
return response.choices[0].message.content.strip()
else: # huggingface
response = client.chat_completion(
messages=messages,
max_tokens=10000,
temperature=temperature,
frequency_penalty=1.4,
top_p=0.9
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error in LLM summarization: {e}")
return "Error: Unable to generate a summary. Please try again."
def search_and_scrape(query, chat_history, num_results=5, max_chars=3000, time_range="", language="all", category="",
engines=[], safesearch=2, method="GET", llm_temperature=0.2, timeout=5, model="huggingface", use_pydf2=True):
try:
# Step 1: Rephrase the Query
rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature)
logger.info(f"Rephrased Query: {rephrased_query}")
if not rephrased_query or rephrased_query.lower() == "not_needed":
logger.info("No need to perform search based on the rephrased query.")
return "No search needed for the provided input."
# Step 2: Extract entity domain
entity_domain = extract_entity_domain(rephrased_query)
logger.info(f"Extracted entity domain: {entity_domain}")
# Step 3: Perform search
# Search query parameters
params = {
'q': rephrased_query,
'format': 'json',
'time_range': time_range,
'language': language,
'category': category,
'engines': ','.join(engines),
'safesearch': safesearch
}
# Remove empty parameters
params = {k: v for k, v in params.items() if v != ""}
# If no engines are specified, set default engines
if 'engines' not in params:
params['engines'] = 'google' # Default to 'google' or any preferred engine
logger.info("No engines specified. Defaulting to 'google'.")
# Headers for SearXNG request
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Accept-Language': 'en-US,en;q=0.5',
'Origin': 'https://shreyas094-searxng-local.hf.space',
'Referer': 'https://shreyas094-searxng-local.hf.space/',
'DNT': '1',
'Connection': 'keep-alive',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-origin',
}
scraped_content = []
page = 1
while len(scraped_content) < num_results:
# Update params with current page
params['pageno'] = page
# Send request to SearXNG
logger.info(f"Sending request to SearXNG for query: {rephrased_query} (Page {page})")
session = requests_retry_session()
try:
if method.upper() == "GET":
response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where())
else: # POST
response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where())
response.raise_for_status()
except requests.exceptions.RequestException as e:
logger.error(f"Error during SearXNG request: {e}")
return f"An error occurred during the search request: {e}"
search_results = response.json()
logger.debug(f"SearXNG Response: {search_results}")
results = search_results.get('results', [])
if not results:
logger.warning(f"No more results returned from SearXNG on page {page}.")
break
for result in results:
if len(scraped_content) >= num_results:
break
url = result.get('url', '')
title = result.get('title', 'No title')
if not is_valid_url(url):
logger.warning(f"Invalid URL: {url}")
continue
try:
logger.info(f"Processing content from: {url}")
content = scrape_full_content(url, max_chars, timeout, use_pydf2)
if content is None: # This means it's a PDF and use_pydf2 is False
continue
if not content:
logger.warning(f"Failed to scrape content from {url}")
continue
scraped_content.append({
"title": title,
"url": url,
"content": content,
"scraper": "pdf" if url.lower().endswith('.pdf') else "newspaper"
})
logger.info(f"Successfully scraped content from {url}. Total scraped: {len(scraped_content)}")
except requests.exceptions.RequestException as e:
logger.error(f"Error scraping {url}: {e}")
except Exception as e:
logger.error(f"Unexpected error while scraping {url}: {e}")
page += 1
if not scraped_content:
logger.warning("No content scraped from search results.")
return "No content could be scraped from the search results."
logger.info(f"Successfully scraped {len(scraped_content)} documents.")
# Step 4: Assess relevance, summarize, and check for uniqueness
relevant_documents = []
unique_summaries = []
for doc in scraped_content:
assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature)
relevance, summary = assessment.split('\n', 1)
if relevance.strip().lower() == "relevant: yes":
summary_text = summary.replace("Summary: ", "").strip()
if is_content_unique(summary_text, unique_summaries):
doc_domain = urlparse(doc['url']).netloc
is_entity_domain = doc_domain == entity_domain
relevant_documents.append({
"title": doc['title'],
"url": doc['url'],
"summary": summary_text,
"scraper": doc['scraper'],
"is_entity_domain": is_entity_domain
})
unique_summaries.append(summary_text)
else:
logger.info(f"Skipping similar content: {doc['title']}")
if not relevant_documents:
logger.warning("No relevant and unique documents found.")
return "No relevant and unique financial news found for the given query."
# Step 5: Rerank documents based on similarity to query and prioritize entity domain
reranked_docs = rerank_documents_with_priority(rephrased_query, relevant_documents, entity_domain, similarity_threshold=0.95, max_results=num_results)
if not reranked_docs:
logger.warning("No documents remained after reranking.")
return "No relevant financial news found after filtering and ranking."
logger.info(f"Reranked and filtered to top {len(reranked_docs)} unique, finance-related documents.")
# Step 5: Scrape full content for top documents (up to num_results)
for doc in reranked_docs[:num_results]:
full_content = scrape_full_content(doc['url'], max_chars)
doc['full_content'] = full_content
# Prepare JSON for LLM
llm_input = {
"query": query,
"documents": [
{
"title": doc['title'],
"url": doc['url'],
"summary": doc['summary'],
"full_content": doc['full_content']
} for doc in reranked_docs[:num_results]
]
}
# Step 6: LLM Summarization
llm_summary = llm_summarize(json.dumps(llm_input), model, temperature=llm_temperature)
return llm_summary
except Exception as e:
logger.error(f"Unexpected error in search_and_scrape: {e}")
return f"An unexpected error occurred during the search and scrape process: {e}"
class Conversation:
def __init__(self, id, title):
self.id = id
self.title = title
self.messages = []
def add_message(self, role, content):
self.messages.append({"role": role, "content": content})
class ConversationManager:
def __init__(self):
self.conversations = {}
self.current_conversation_id = None
def create_conversation(self, title):
conversation_id = str(random.randint(1000, 9999))
self.conversations[conversation_id] = Conversation(conversation_id, title)
self.current_conversation_id = conversation_id
return conversation_id
def get_conversation(self, conversation_id):
return self.conversations.get(conversation_id)
def get_conversation_list(self):
return [{"id": conv.id, "title": conv.title} for conv in self.conversations.values()]
conversation_manager = ConversationManager()
def chat_function(message: str, history: List[Tuple[str, str]], conversation_id: str, num_results: int, max_chars: int, time_range: str, language: str, category: str, engines: List[str], safesearch: int, method: str, llm_temperature: float, model: str, use_pydf2: bool):
if not conversation_id:
conversation_id = conversation_manager.create_conversation(message[:30] + "...")
conversation = conversation_manager.get_conversation(conversation_id)
if not conversation:
return "Error: Conversation not found", conversation_id
conversation.add_message("user", message)
chat_history = "\n".join([f"{msg['role']}: {msg['content']}" for msg in conversation.messages])
query_type = determine_query_type(message, chat_history, client)
if query_type == "knowledge_base":
response = generate_ai_response(message, chat_history, client, model)
else: # web_search
response = search_and_scrape(
query=message,
chat_history=chat_history,
num_results=num_results,
max_chars=max_chars,
time_range=time_range,
language=language,
category=category,
engines=engines,
safesearch=safesearch,
method=method,
llm_temperature=llm_temperature,
model=model,
use_pydf2=use_pydf2
)
conversation.add_message("assistant", response)
return response, conversation_id
def load_conversation(conversation_id: str):
conversation = conversation_manager.get_conversation(conversation_id)
if not conversation:
return [], ""
return conversation.messages, conversation.title
# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as iface:
conversation_id = gr.State("")
with gr.Row():
with gr.Column(scale=1):
conversation_list = gr.List(
conversation_manager.get_conversation_list(),
label="Conversations",
render=False
)
with gr.Column(scale=3):
chatbot = gr.Chatbot(height=500)
msg = gr.Textbox(label="Type your message here...")
send = gr.Button("Send")
with gr.Accordion("Advanced Parameters", open=False):
num_results = gr.Slider(5, 20, value=10, step=1, label="Number of initial results")
max_chars = gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve")
time_range = gr.Dropdown(["", "day", "week", "month", "year"], value="", label="Time Range")
language = gr.Dropdown(["", "all", "en", "fr", "de", "es", "it", "nl", "pt", "pl", "ru", "zh"], value="", label="Language")
category = gr.Dropdown(["", "general", "news", "images", "videos", "music", "files", "it", "science", "social media"], value="", label="Category")
engines = gr.Dropdown(
["google", "bing", "duckduckgo", "baidu", "yahoo", "qwant", "startpage"],
multiselect=True,
value=["google", "duckduckgo", "bing", "qwant"],
label="Engines"
)
safesearch = gr.Slider(0, 2, value=2, step=1, label="Safe Search Level")
method = gr.Radio(["GET", "POST"], value="POST", label="HTTP Method")
llm_temperature = gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature")
model = gr.Dropdown(["huggingface", "groq", "mistral"], value="mistral", label="LLM Model")
use_pydf2 = gr.Checkbox(label="Use PyPDF2 for PDF scraping", value=False)
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history, conversation_id, num_results, max_chars, time_range, language, category, engines, safesearch, method, llm_temperature, model, use_pydf2):
user_message = history[-1][0]
bot_message, new_conversation_id = chat_function(
user_message, history, conversation_id, num_results, max_chars, time_range,
language, category, engines, safesearch, method, llm_temperature, model, use_pydf2
)
history[-1][1] = bot_message
return history, new_conversation_id, conversation_manager.get_conversation_list()
send.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot,
[chatbot, conversation_id, num_results, max_chars, time_range, language, category, engines, safesearch, method, llm_temperature, model, use_pydf2],
[chatbot, conversation_id, conversation_list]
)
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot,
[chatbot, conversation_id, num_results, max_chars, time_range, language, category, engines, safesearch, method, llm_temperature, model, use_pydf2],
[chatbot, conversation_id, conversation_list]
)
conversation_list.select(load_conversation, [conversation_list], [chatbot, conversation_id])
iface.launch(share=True)