Shreyas094's picture
Update app.py
128980b verified
raw
history blame
32.2 kB
import requests
import gradio as gr
from bs4 import BeautifulSoup
import logging
from urllib.parse import urlparse
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from trafilatura import fetch_url, extract
from trafilatura import extract
from requests.exceptions import Timeout
from trafilatura.settings import use_config
from urllib.request import urlopen, Request
import json
from huggingface_hub import InferenceClient
import random
import time
from sentence_transformers import SentenceTransformer, util
import torch
from datetime import datetime
import os
from dotenv import load_dotenv
import certifi
import requests
import scrapy
from scrapy.crawler import CrawlerProcess
from scrapy import signals
from scrapy.signalmanager import dispatcher
from scrapy.utils.log import configure_logging
from newspaper import Article
import PyPDF2
import io
import requests
from duckduckgo_search import DDGS
import random
import datetime
from groq import Groq
# Automatically get the current year
current_year = datetime.datetime.now().year
# Load environment variables from a .env file
load_dotenv()
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# SearXNG instance details
SEARXNG_URL = 'https://shreyas094-searxng-local.hf.space/search'
SEARXNG_KEY = 'f9f07f93b37b8483aadb5ba717f556f3a4ac507b281b4ca01e6c6288aa3e3ae5'
# Use the environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
client = InferenceClient(
"mistralai/Mistral-Nemo-Instruct-2407",
token=HF_TOKEN,
)
# Default API key for examples (replace with a dummy value or leave empty)
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Initialize Groq client
groq_client = Groq(api_key=GROQ_API_KEY)
# Initialize the similarity model
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
def duckduckgo_search(query, num_results=10, time_range="", language="", safesearch=2):
try:
ddgs = DDGS()
# Convert time_range to DuckDuckGo format
if time_range == "day":
timelimit = "d"
elif time_range == "week":
timelimit = "w"
elif time_range == "month":
timelimit = "m"
elif time_range == "year":
timelimit = "y"
else:
timelimit = None
# Convert safesearch to DuckDuckGo format
if safesearch == 0:
safesearch_setting = "off"
elif safesearch == 1:
safesearch_setting = "moderate"
else:
safesearch_setting = "strict"
results = ddgs.text(
query,
region='wt-wt',
safesearch=safesearch_setting,
timelimit=timelimit,
max_results=num_results
)
return [{"url": result["href"], "title": result["title"]} for result in results]
except Exception as e:
logger.error(f"Error in DuckDuckGo search: {e}")
return []
# Set up a session with retry mechanism
def requests_retry_session(
retries=0,
backoff_factor=0.1,
status_forcelist=(500, 502, 504),
session=None,
):
session = session or requests.Session()
retry = Retry(
total=retries,
read=retries,
connect=retries,
backoff_factor=backoff_factor,
status_forcelist=status_forcelist,
)
adapter = HTTPAdapter(max_retries=retry)
session.mount('http://', adapter)
session.mount('https://', adapter)
return session
def is_valid_url(url):
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except ValueError:
return False
def scrape_pdf_content(url, max_chars=3000, timeout=5):
try:
logger.info(f"Scraping PDF content from: {url}")
# Download the PDF file
response = requests.get(url, timeout=timeout)
response.raise_for_status()
# Create a PDF reader object
pdf_reader = PyPDF2.PdfReader(io.BytesIO(response.content))
# Extract text from all pages
content = ""
for page in pdf_reader.pages:
content += page.extract_text() + "\n"
# Limit the content to max_chars
return content[:max_chars] if content else ""
except requests.Timeout:
logger.error(f"Timeout error while scraping PDF content from {url}")
return ""
except Exception as e:
logger.error(f"Error scraping PDF content from {url}: {e}")
return ""
class NewsSpider(scrapy.Spider):
name = 'news_spider'
def __init__(self, url=None, *args, **kwargs):
super(NewsSpider, self).__init__(*args, **kwargs)
self.start_urls = [url] if url else []
def parse(self, response):
content = ' '.join(response.css('p::text').getall())
self.logger.info(f"Scraped content length: {len(content)}")
return {'content': content}
def scrape_with_scrapy(url, timeout=30):
logger.info(f"Starting to scrape with Scrapy: {url}")
configure_logging(install_root_handler=False)
logging.getLogger('scrapy').setLevel(logging.WARNING)
results = []
def spider_results(signal, sender, item, response, spider):
results.append(item)
process = CrawlerProcess(settings={
'LOG_ENABLED': True,
'LOG_LEVEL': 'WARNING',
'DOWNLOAD_TIMEOUT': timeout
})
dispatcher.connect(spider_results, signal=signals.item_scraped)
process.crawl(NewsSpider, url=url)
process.start()
# Get the content from results
if results:
return results[0]['content']
return ''
def scrape_with_newspaper(url):
if url.lower().endswith('.pdf'):
return scrape_pdf_content(url)
logger.info(f"Starting to scrape with Newspaper3k: {url}")
try:
article = Article(url)
article.download()
article.parse()
# Combine title and text
content = f"Title: {article.title}\n\n"
content += article.text
# Add publish date if available
if article.publish_date:
content += f"\n\nPublish Date: {article.publish_date}"
# Add authors if available
if article.authors:
content += f"\n\nAuthors: {', '.join(article.authors)}"
# Add top image URL if available
if article.top_image:
content += f"\n\nTop Image URL: {article.top_image}"
return content
except Exception as e:
logger.error(f"Error scraping {url} with Newspaper3k: {e}")
return ""
def scrape_with_bs4(url, session, max_chars=None):
try:
response = session.get(url, timeout=5)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content')
if main_content:
content = main_content.get_text(strip=True, separator='\n')
else:
content = soup.get_text(strip=True, separator='\n')
return content[:max_chars] if max_chars else content
except Exception as e:
logger.error(f"Error scraping {url} with BeautifulSoup: {e}")
return ""
def scrape_with_trafilatura(url, max_chars=None, timeout=5, use_beautifulsoup=False):
try:
response = requests.get(url, timeout=timeout)
response.raise_for_status()
downloaded = response.text
content = ""
if use_beautifulsoup:
soup = BeautifulSoup(downloaded, "lxml")
# Convert BeautifulSoup object to a string
html_string = str(soup)
# Use Trafilatura's extract function directly on the HTML string
content = extract(html_string, include_comments=False, include_tables=True, no_fallback=False)
# Fallback mechanism: if BeautifulSoup didn't yield results, try without it
if not content and use_beautifulsoup:
logger.info("BeautifulSoup method failed to extract content. Trying without BeautifulSoup.")
content = extract(downloaded, include_comments=False, include_tables=True, no_fallback=False)
# If still no content, use the URL directly
if not content:
content = extract(url, include_comments=False, include_tables=True, no_fallback=False)
return (content or "")[:max_chars] if max_chars else (content or "")
except requests.Timeout:
logger.error(f"Timeout error while scraping {url} with Trafilatura")
return ""
except Exception as e:
logger.error(f"Error scraping {url} with Trafilatura: {e}")
return ""
def rephrase_query(chat_history, query, temperature=0.2):
system_prompt = f"""
You are a highly intelligent and context-aware conversational assistant. Your tasks are as follows:
1. Determine if the new query is a continuation of the previous conversation or an entirely new topic.
2. For both continuations and new topics:
a. **Entity Identification and Quotation**:
- Analyze the user's query to identify the main entities (e.g., organizations, brands, products, locations).
- For each identified entity, enclose ONLY the entity itself in double quotes within the query.
- If no identifiable entities are found, proceed without adding quotes.
b. **Query Preservation**:
- Maintain the entire original query, including any parts after commas or other punctuation.
- Do not remove or truncate any part of the original query.
3. If it's a continuation:
- Incorporate relevant information from the context to make the query more specific and contextual.
- Ensure that entities from the previous context are properly quoted if they appear in the rephrased query.
4. For both continuations and new topics:
- Append "after: {current_year}" to the end of the rephrased query.
- Ensure there is a space before "after:" for proper formatting.
- Do not use quotes or the "+" operator when adding the year.
5. **Output**:
- Return ONLY the rephrased query, ensuring it is concise, clear, and contextually accurate.
- Do not include any additional commentary or explanation.
### Example Scenarios
**Scenario 1: New Topic**
- **User Query**: "What is the latest news on Golomt Bank?"
- **Rephrased Query**: "What is the latest news on \"Golomt Bank\" after: {current_year}"
**Scenario 2: Continuation**
- **Previous Query**: "What is the latest news on Golomt Bank?"
- **User Query**: "How did the Bank perform in Q2 2024?"
- **Rephrased Query**: "How did \"Golomt Bank\" perform in Q2 2024 after: {current_year}"
**Scenario 3: Query with Multiple Entities and Comma**
- **User Query**: "What is the latest news about Prospect Capital, did the rating change?"
- **Rephrased Query**: "What is the latest news about \"Prospect Capital\", did the rating change after: {current_year}"
**Scenario 4: Query Without Recognizable Entities**
- **User Query**: "How does photosynthesis work?"
- **Rephrased Query**: "How does photosynthesis work? after: {current_year}"
"""
user_prompt = f"""
Conversation context:
{chat_history}
New query: {query}
Rephrased query:
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
logger.info(f"Sending rephrasing request to LLM with temperature {temperature}")
response = client.chat_completion(
messages=messages,
max_tokens=150,
temperature=temperature
)
logger.info("Received rephrased query from LLM")
rephrased_question = response.choices[0].message.content.strip()
# Remove surrounding quotes if present
if (rephrased_question.startswith('"') and rephrased_question.endswith('"')) or \
(rephrased_question.startswith("'") and rephrased_question.endswith("'")):
rephrased_question = rephrased_question[1:-1].strip()
logger.info(f"Rephrased Query (cleaned): {rephrased_question}")
return rephrased_question
except Exception as e:
logger.error(f"Error rephrasing query with LLM: {e}")
return query # Fallback to original query if rephrasing fails
def rerank_documents(query, documents, similarity_threshold=0.95, max_results=5):
try:
# Step 1: Encode the query and document summaries
query_embedding = similarity_model.encode(query, convert_to_tensor=True)
doc_summaries = [doc['summary'] for doc in documents]
if not doc_summaries:
logger.warning("No document summaries to rerank.")
return documents
doc_embeddings = similarity_model.encode(doc_summaries, convert_to_tensor=True)
# Step 2: Compute Cosine Similarity
cosine_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
# Combine documents and cosine scores
scored_documents = list(zip(documents, cosine_scores))
# Step 3: Sort documents by cosine similarity score
scored_documents.sort(key=lambda x: x[1], reverse=True)
# Step 4: Filter out similar documents
filtered_docs = []
for doc, score in scored_documents:
if score < 0.5: # If similarity to query is too low, skip
continue
# Check similarity with already selected documents
is_similar = False
for selected_doc in filtered_docs:
similarity = util.pytorch_cos_sim(
similarity_model.encode(doc['summary'], convert_to_tensor=True),
similarity_model.encode(selected_doc['summary'], convert_to_tensor=True)
)
if similarity > similarity_threshold:
is_similar = True
break
if not is_similar:
filtered_docs.append(doc)
if len(filtered_docs) >= max_results:
break
logger.info(f"Reranked and filtered to {len(filtered_docs)} unique documents.")
return filtered_docs
except Exception as e:
logger.error(f"Error during reranking documents: {e}")
return documents[:max_results] # Fallback to first max_results documents if reranking fails
def compute_similarity(text1, text2):
# Encode the texts
embedding1 = similarity_model.encode(text1, convert_to_tensor=True)
embedding2 = similarity_model.encode(text2, convert_to_tensor=True)
# Compute cosine similarity
cosine_similarity = util.pytorch_cos_sim(embedding1, embedding2)
return cosine_similarity.item()
def is_content_unique(new_content, existing_contents, similarity_threshold=0.8):
for existing_content in existing_contents:
similarity = compute_similarity(new_content, existing_content)
if similarity > similarity_threshold:
return False
return True
def assess_relevance_and_summarize(llm_client, query, document, temperature=0.2):
system_prompt = """You are a world-class AI assistant specializing in financial news analysis. Your task is to assess the relevance of a given document to a user's query and provide a detailed summary if it's relevant."""
user_prompt = f"""
Query: {query}
Document Title: {document['title']}
Document Content:
{document['content'][:1000]} # Limit to first 1000 characters for efficiency
Instructions:
1. Assess if the document is relevant to the QUERY made by the user.
2. If relevant, provide a detailed summary that captures the unique aspects of this particular news item. Include:
- Key facts and figures
- Dates of events or announcements
- Names of important entities mentioned
- Any financial metrics or changes reported
- The potential impact or significance of the news
3. If not relevant, simply state "Not relevant".
Your response should be in the following format:
Relevant: [Yes/No]
Summary: [Your detailed summary if relevant, or "Not relevant" if not]
Remember to focus on financial aspects and implications in your assessment and summary. Aim to make the summary distinctive, highlighting what makes this particular news item unique compared to similar news.
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
response = llm_client.chat_completion(
messages=messages,
max_tokens=300, # Increased to allow for more detailed summaries
temperature=temperature,
top_p=0.9,
frequency_penalty=1.4
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error assessing relevance and summarizing with LLM: {e}")
return "Error: Unable to assess relevance and summarize"
def scrape_full_content(url, scraper="bs4", max_chars=3000, timeout=5):
try:
logger.info(f"Scraping full content from: {url}")
# Check if the URL ends with .pdf
if url.lower().endswith('.pdf'):
return scrape_pdf_content(url, max_chars, timeout)
if scraper == "bs4":
session = requests_retry_session()
response = session.get(url, timeout=timeout)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
# Try to find the main content
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content')
if main_content:
content = main_content.get_text(strip=True, separator='\n')
else:
content = soup.get_text(strip=True, separator='\n')
elif scraper == "trafilatura":
content = scrape_with_trafilatura(url, max_chars, timeout, use_beautifulsoup=True)
elif scraper == "scrapy":
content = scrape_with_scrapy(url, timeout)
elif scraper == "newspaper":
content = scrape_with_newspaper(url)
else:
logger.error(f"Unknown scraper: {scraper}")
return ""
# Limit the content to max_chars
return content[:max_chars] if content else ""
except requests.Timeout:
logger.error(f"Timeout error while scraping full content from {url}")
return ""
except Exception as e:
logger.error(f"Error scraping full content from {url}: {e}")
return ""
def llm_summarize(json_input, model, temperature=0.2):
system_prompt = """You are Sentinel, a world-class Financial analysis AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them."""
user_prompt = f"""
Please provide a comprehensive summary based on the following JSON input:
{json_input}
Instructions:
1. Analyze the query and the provided documents.
2. Write a detailed, long, and complete research document that is informative and relevant to the user's query.
3. Use an unbiased and professional tone in your response.
4. Do not repeat text verbatim from the input.
5. Provide the answer in the response itself.
6. You can use markdown to format your response.
7. Use bullet points to list information where appropriate.
8. Cite the answer using [number] notation along with the appropriate source URL embedded in the notation.
9. Place these citations at the end of the relevant sentences.
10. You can cite the same sentence multiple times if it's relevant to different parts of your answer.
Your response should be detailed, informative, accurate, and directly relevant to the user's query."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
if model == "groq":
response = groq_client.chat.completions.create(
messages=messages,
model="llama-3.1-8b-instant",
max_tokens=5500,
temperature=temperature,
top_p=0.9,
presence_penalty=1.2,
stream=False
)
return response.choices[0].message.content.strip()
else:
response = client.chat_completion(
messages=messages,
max_tokens=10000,
temperature=temperature,
frequency_penalty=1.4,
top_p=0.9
)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"Error in LLM summarization: {e}")
return "Error: Unable to generate a summary. Please try again."
def search_and_scrape(query, chat_history, num_results=5, scraper="bs4", max_chars=3000, time_range="", language="all", category="",
engines=[], safesearch=2, method="GET", llm_temperature=0.2, timeout=5, use_duckduckgo=False, model="huggingface"):
try:
# Step 1: Rephrase the Query
rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature)
logger.info(f"Rephrased Query: {rephrased_query}")
if not rephrased_query or rephrased_query.lower() == "not_needed":
logger.info("No need to perform search based on the rephrased query.")
return "No search needed for the provided input."
# Step 2: Perform search
if use_duckduckgo:
search_results = duckduckgo_search(rephrased_query, num_results, time_range, language, safesearch)
results = search_results # Assign DuckDuckGo results directly
else:
# Search query parameters
params = {
'q': rephrased_query,
'format': 'json',
'time_range': time_range,
'language': language,
'category': category,
'engines': ','.join(engines),
'safesearch': safesearch
}
# Remove empty parameters
params = {k: v for k, v in params.items() if v != ""}
# If no engines are specified, set default engines
if 'engines' not in params:
params['engines'] = 'google' # Default to 'google' or any preferred engine
logger.info("No engines specified. Defaulting to 'google'.")
# Headers for SearXNG request
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Accept-Language': 'en-US,en;q=0.5',
'Origin': 'https://shreyas094-searxng-local.hf.space',
'Referer': 'https://shreyas094-searxng-local.hf.space/',
'DNT': '1',
'Connection': 'keep-alive',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-origin',
}
scraped_content = []
page = 1
while len(scraped_content) < num_results:
if not use_duckduckgo:
# Update params with current page
params['pageno'] = page
# Send request to SearXNG
logger.info(f"Sending request to SearXNG for query: {rephrased_query} (Page {page})")
session = requests_retry_session()
try:
if method.upper() == "GET":
response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where())
else: # POST
response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where())
response.raise_for_status()
except requests.exceptions.RequestException as e:
logger.error(f"Error during SearXNG request: {e}")
return f"An error occurred during the search request: {e}"
search_results = response.json()
logger.debug(f"SearXNG Response: {search_results}")
results = search_results.get('results', [])
if not results:
logger.warning(f"No more results returned from SearXNG on page {page}.")
break
for result in results:
if len(scraped_content) >= num_results:
break
url = result.get('url', '') if not use_duckduckgo else result.get('url', '')
title = result.get('title', 'No title')
if not is_valid_url(url):
logger.warning(f"Invalid URL: {url}")
continue
try:
logger.info(f"Processing content from: {url}")
content = scrape_full_content(url, scraper, max_chars, timeout)
if not content:
logger.warning(f"Failed to scrape content from {url}")
continue
scraped_content.append({
"title": title,
"url": url,
"content": content,
"scraper": "pdf" if url.lower().endswith('.pdf') else scraper
})
logger.info(f"Successfully scraped content from {url}. Total scraped: {len(scraped_content)}")
except requests.exceptions.RequestException as e:
logger.error(f"Error scraping {url}: {e}")
except Exception as e:
logger.error(f"Unexpected error while scraping {url}: {e}")
if use_duckduckgo:
break # DuckDuckGo search doesn't support pagination in this implementation
else:
page += 1
if not scraped_content:
logger.warning("No content scraped from search results.")
return "No content could be scraped from the search results."
logger.info(f"Successfully scraped {len(scraped_content)} documents.")
# Step 3: Assess relevance, summarize, and check for uniqueness
relevant_documents = []
unique_summaries = []
for doc in scraped_content:
# In the search_and_scrape function
assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature)
relevance, summary = assessment.split('\n', 1)
if relevance.strip().lower() == "relevant: yes":
summary_text = summary.replace("Summary: ", "").strip()
if is_content_unique(summary_text, unique_summaries):
relevant_documents.append({
"title": doc['title'],
"url": doc['url'],
"summary": summary_text,
"scraper": doc['scraper']
})
unique_summaries.append(summary_text)
else:
logger.info(f"Skipping similar content: {doc['title']}")
if not relevant_documents:
logger.warning("No relevant and unique documents found.")
return "No relevant and unique financial news found for the given query."
logger.debug(f"Assessment result: {assessment}")
# Step 4: Rerank documents based on similarity to query
reranked_docs = rerank_documents(rephrased_query, relevant_documents, similarity_threshold=0.95, max_results=num_results)
if not reranked_docs:
logger.warning("No documents remained after reranking.")
return "No relevant financial news found after filtering and ranking."
logger.info(f"Reranked and filtered to top {len(reranked_docs)} unique, finance-related documents.")
# Step 5: Scrape full content for top documents (up to num_results)
for doc in reranked_docs[:num_results]:
full_content = scrape_full_content(doc['url'], scraper, max_chars)
doc['full_content'] = full_content
# Prepare JSON for LLM
llm_input = {
"query": query,
"documents": [
{
"title": doc['title'],
"url": doc['url'],
"summary": doc['summary'],
"full_content": doc['full_content']
} for doc in reranked_docs[:num_results]
]
}
# Step 6: LLM Summarization
llm_summary = llm_summarize(json.dumps(llm_input), model, temperature=llm_temperature)
return llm_summary
except Exception as e:
logger.error(f"Unexpected error in search_and_scrape: {e}")
return f"An unexpected error occurred during the search and scrape process: {e}"
def chat_function(message, history, num_results, scraper, max_chars, time_range, language, category, engines, safesearch, method, llm_temperature, use_duckduckgo, model):
chat_history = "\n".join([f"{role}: {msg}" for role, msg in history])
response = search_and_scrape(
query=message,
chat_history=chat_history,
num_results=num_results,
scraper=scraper,
max_chars=max_chars,
time_range=time_range,
language=language,
category=category,
engines=engines,
safesearch=safesearch,
method=method,
llm_temperature=llm_temperature,
use_duckduckgo=use_duckduckgo,
model=model
)
yield response
iface = gr.ChatInterface(
chat_function,
title="Web Scraper for Financial News",
description="Enter your query, and I'll search the web for the most recent and relevant financial news, scrape content, and provide summarized results.",
theme=gr.Theme.from_hub("allenai/gradio-theme"),
additional_inputs=[
gr.Slider(5, 20, value=10, step=1, label="Number of initial results"),
gr.Dropdown(["bs4", "trafilatura", "scrapy", "newspaper"], value="newspaper", label="Scraping Method"),
gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"),
gr.Dropdown(["", "day", "week", "month", "year"], value="", label="Time Range"),
gr.Dropdown(["", "all", "en", "fr", "de", "es", "it", "nl", "pt", "pl", "ru", "zh"], value="", label="Language"),
gr.Dropdown(["", "general", "news", "images", "videos", "music", "files", "it", "science", "social media"], value="", label="Category"),
gr.Dropdown(
["google", "bing", "duckduckgo", "baidu", "yahoo", "qwant", "startpage"],
multiselect=True,
value=["google", "duckduckgo", "bing", "qwant"],
label="Engines"
),
gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"),
gr.Radio(["GET", "POST"], value="POST", label="HTTP Method"),
gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"),
gr.Checkbox(label="Use DuckDuckGo Search", value=False),
gr.Dropdown(["huggingface", "groq"], value="huggingface", label="LLM Model"),
],
additional_inputs_accordion=gr.Accordion("⚙️ Advanced Parameters", open=True),
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
chatbot=gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=500,
)
)
if __name__ == "__main__":
logger.info("Starting the SearXNG Scraper for Financial News using ChatInterface with Advanced Parameters")
iface.launch(share=True)