|
import requests |
|
import gradio as gr |
|
from bs4 import BeautifulSoup |
|
import logging |
|
from urllib.parse import urlparse |
|
from requests.adapters import HTTPAdapter |
|
from requests.packages.urllib3.util.retry import Retry |
|
from trafilatura import fetch_url, extract |
|
from trafilatura import extract |
|
from requests.exceptions import Timeout |
|
from trafilatura.settings import use_config |
|
from urllib.request import urlopen, Request |
|
import json |
|
from huggingface_hub import InferenceClient |
|
import random |
|
import time |
|
from sentence_transformers import SentenceTransformer, util |
|
import torch |
|
from datetime import datetime |
|
import os |
|
from dotenv import load_dotenv |
|
import certifi |
|
import requests |
|
import scrapy |
|
from scrapy.crawler import CrawlerProcess |
|
from scrapy import signals |
|
from scrapy.signalmanager import dispatcher |
|
from scrapy.utils.log import configure_logging |
|
from newspaper import Article |
|
from io import BytesIO |
|
from PyPDF2 import PdfReader |
|
import logging |
|
|
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
SEARXNG_URL = 'https://shreyas094-searxng-local.hf.space/search' |
|
SEARXNG_KEY = 'f9f07f93b37b8483aadb5ba717f556f3a4ac507b281b4ca01e6c6288aa3e3ae5' |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
client = InferenceClient( |
|
"mistralai/Mistral-Nemo-Instruct-2407", |
|
token=HF_TOKEN, |
|
) |
|
|
|
|
|
similarity_model = SentenceTransformer('all-MiniLM-L6-v2') |
|
|
|
|
|
|
|
def requests_retry_session( |
|
retries=0, |
|
backoff_factor=0.1, |
|
status_forcelist=(500, 502, 504), |
|
session=None, |
|
): |
|
session = session or requests.Session() |
|
retry = Retry( |
|
total=retries, |
|
read=retries, |
|
connect=retries, |
|
backoff_factor=backoff_factor, |
|
status_forcelist=status_forcelist, |
|
) |
|
adapter = HTTPAdapter(max_retries=retry) |
|
session.mount('http://', adapter) |
|
session.mount('https://', adapter) |
|
return session |
|
|
|
def is_valid_url(url): |
|
try: |
|
result = urlparse(url) |
|
return all([result.scheme, result.netloc]) |
|
except ValueError: |
|
return False |
|
|
|
class NewsSpider(scrapy.Spider): |
|
name = 'news_spider' |
|
|
|
def __init__(self, url=None, *args, **kwargs): |
|
super(NewsSpider, self).__init__(*args, **kwargs) |
|
self.start_urls = [url] if url else [] |
|
|
|
def parse(self, response): |
|
content = ' '.join(response.css('p::text').getall()) |
|
self.logger.info(f"Scraped content length: {len(content)}") |
|
return {'content': content} |
|
|
|
def scrape_with_scrapy(url, timeout=30): |
|
logger.info(f"Starting to scrape with Scrapy: {url}") |
|
configure_logging(install_root_handler=False) |
|
logging.getLogger('scrapy').setLevel(logging.WARNING) |
|
|
|
results = [] |
|
|
|
def spider_results(signal, sender, item, response, spider): |
|
results.append(item) |
|
|
|
process = CrawlerProcess(settings={ |
|
'LOG_ENABLED': True, |
|
'LOG_LEVEL': 'WARNING', |
|
'DOWNLOAD_TIMEOUT': timeout |
|
}) |
|
|
|
dispatcher.connect(spider_results, signal=signals.item_scraped) |
|
|
|
process.crawl(NewsSpider, url=url) |
|
process.start() |
|
|
|
|
|
if results: |
|
return results[0]['content'] |
|
return '' |
|
|
|
def scrape_with_newspaper(url): |
|
logger.info(f"Starting to scrape with Newspaper3k: {url}") |
|
try: |
|
|
|
response = requests.get(url) |
|
content_type = response.headers.get('Content-Type', '').lower() |
|
|
|
if 'application/pdf' in content_type: |
|
|
|
logger.info(f"Detected PDF file: {url}") |
|
pdf_file = BytesIO(response.content) |
|
pdf_reader = PdfReader(pdf_file) |
|
text = "" |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() + "\n" |
|
return text.strip() |
|
else: |
|
|
|
article = Article(url) |
|
article.download() |
|
article.parse() |
|
return article.text |
|
except Exception as e: |
|
logger.error(f"Error scraping {url} with Newspaper3k: {e}") |
|
return "" |
|
|
|
def scrape_with_bs4(url, session, max_chars=None): |
|
try: |
|
response = session.get(url, timeout=5) |
|
response.raise_for_status() |
|
soup = BeautifulSoup(response.content, 'html.parser') |
|
|
|
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content') |
|
|
|
if main_content: |
|
content = main_content.get_text(strip=True, separator='\n') |
|
else: |
|
content = soup.get_text(strip=True, separator='\n') |
|
|
|
return content[:max_chars] if max_chars else content |
|
except Exception as e: |
|
logger.error(f"Error scraping {url} with BeautifulSoup: {e}") |
|
return "" |
|
|
|
def scrape_with_trafilatura(url, max_chars=None, timeout=5): |
|
""" |
|
Scrape web content using Trafilatura with simplified error handling and fallback options. |
|
|
|
Args: |
|
url (str): The URL to scrape |
|
max_chars (int, optional): Maximum number of characters to return |
|
timeout (int, optional): Request timeout in seconds |
|
|
|
Returns: |
|
str: Extracted content or empty string if extraction fails |
|
""" |
|
try: |
|
|
|
response = requests.get(url, timeout=timeout) |
|
response.raise_for_status() |
|
|
|
|
|
content = extract( |
|
response.text, |
|
include_comments=False, |
|
include_tables=True, |
|
no_fallback=False |
|
) |
|
|
|
|
|
if not content: |
|
content = extract( |
|
url, |
|
include_comments=False, |
|
include_tables=True, |
|
no_fallback=False |
|
) |
|
|
|
|
|
if content and max_chars: |
|
return content[:max_chars] |
|
return content or "" |
|
|
|
except requests.Timeout: |
|
logger.error(f"Timeout error while scraping {url}") |
|
return "" |
|
except Exception as e: |
|
logger.error(f"Error scraping {url}: {str(e)}") |
|
return "" |
|
|
|
def rephrase_query(chat_history, query, temperature=0.2): |
|
system_prompt = """You are a highly intelligent and context-aware conversational assistant. Your task is to accurately rephrase the given query based on the provided conversation context. Follow these steps: |
|
1. Assess whether the new query logically follows from the conversation context or introduces a new, unrelated topic. |
|
2. If it is a continuation, incorporate the most relevant details from the context to make the rephrased query more specific and aligned with the ongoing conversation. |
|
3. If it introduces a new topic, rewrite the query to ensure clarity, precision, and suitability for a standalone search, avoiding any irrelevant context from the conversation. |
|
4. Return ONLY the rephrased query, ensuring it is concise, clear, and contextually accurate, without any additional commentary or explanation.""" |
|
|
|
user_prompt = f""" |
|
Conversation context: |
|
{chat_history} |
|
|
|
New query: {query} |
|
|
|
Rephrased query: |
|
""" |
|
|
|
messages = [ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt} |
|
] |
|
|
|
try: |
|
logger.info(f"Sending rephrasing request to LLM with temperature {temperature}") |
|
response = client.chat_completion( |
|
messages=messages, |
|
max_tokens=150, |
|
temperature=temperature |
|
) |
|
logger.info("Received rephrased query from LLM") |
|
rephrased_question = response.choices[0].message.content.strip() |
|
|
|
|
|
if (rephrased_question.startswith('"') and rephrased_question.endswith('"')) or \ |
|
(rephrased_question.startswith("'") and rephrased_question.endswith("'")): |
|
rephrased_question = rephrased_question[1:-1].strip() |
|
|
|
logger.info(f"Rephrased Query (cleaned): {rephrased_question}") |
|
return rephrased_question |
|
except Exception as e: |
|
logger.error(f"Error rephrasing query with LLM: {e}") |
|
return query |
|
|
|
def rerank_documents(query, documents): |
|
try: |
|
|
|
query_embedding = similarity_model.encode(query, convert_to_tensor=True) |
|
doc_summaries = [doc['summary'] for doc in documents] |
|
|
|
if not doc_summaries: |
|
logger.warning("No document summaries to rerank.") |
|
return documents |
|
|
|
doc_embeddings = similarity_model.encode(doc_summaries, convert_to_tensor=True) |
|
|
|
|
|
cosine_scores = util.cos_sim(query_embedding, doc_embeddings)[0] |
|
|
|
|
|
dot_product_scores = torch.matmul(query_embedding, doc_embeddings.T) |
|
|
|
|
|
if dot_product_scores.dim() == 0: |
|
dot_product_scores = dot_product_scores.unsqueeze(0) |
|
|
|
|
|
scored_documents = list(zip(documents, cosine_scores, dot_product_scores)) |
|
|
|
|
|
scored_documents.sort(key=lambda x: x[1], reverse=True) |
|
|
|
|
|
reranked_docs = [doc[0] for doc in scored_documents[:5]] |
|
logger.info(f"Reranked to top {len(reranked_docs)} documents.") |
|
return reranked_docs |
|
except Exception as e: |
|
logger.error(f"Error during reranking documents: {e}") |
|
return documents[:5] |
|
|
|
def compute_similarity(text1, text2): |
|
|
|
embedding1 = similarity_model.encode(text1, convert_to_tensor=True) |
|
embedding2 = similarity_model.encode(text2, convert_to_tensor=True) |
|
|
|
|
|
cosine_similarity = util.pytorch_cos_sim(embedding1, embedding2) |
|
|
|
return cosine_similarity.item() |
|
|
|
def is_content_unique(new_content, existing_contents, similarity_threshold=0.8): |
|
for existing_content in existing_contents: |
|
similarity = compute_similarity(new_content, existing_content) |
|
if similarity > similarity_threshold: |
|
return False |
|
return True |
|
|
|
def assess_relevance_and_summarize(llm_client, query, document, temperature=0.2): |
|
system_prompt = """You are a world class AI assistant. Your task is to assess whether the given text is relevant to the user's query and provide a brief summary if it is relevant.""" |
|
|
|
user_prompt = f""" |
|
Query: {query} |
|
|
|
Document Content: |
|
{document['content']} |
|
|
|
Instructions: |
|
1. Assess if the document is relevant to the QUERY made by the user. |
|
2. If relevant, summarize the main points in 1-2 sentences. |
|
3. If not relevant, simply state "Not relevant". |
|
|
|
Your response should be in the following format: |
|
Relevant: [Yes/No] |
|
Summary: [Your 1-2 sentence summary if relevant, or "Not relevant" if not] |
|
|
|
Remember to focus on financial aspects and implications in your assessment and summary. |
|
""" |
|
|
|
messages = [ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt} |
|
] |
|
|
|
try: |
|
response = llm_client.chat_completion( |
|
messages=messages, |
|
max_tokens=150, |
|
temperature=temperature, |
|
top_p=0.9 |
|
) |
|
return response.choices[0].message.content.strip() |
|
except Exception as e: |
|
logger.error(f"Error assessing relevance and summarizing with LLM: {e}") |
|
return "Error: Unable to assess relevance and summarize" |
|
|
|
def scrape_full_content(url, scraper="bs4", max_chars=3000, timeout=5): |
|
""" |
|
Unified content scraper that supports multiple scraping methods. |
|
|
|
Args: |
|
url (str): The URL to scrape |
|
scraper (str): Scraping method to use ('bs4', 'trafilatura', 'scrapy', 'newspaper') |
|
max_chars (int): Maximum number of characters to return |
|
timeout (int): Request timeout in seconds |
|
|
|
Returns: |
|
str: Scraped content or empty string if scraping fails |
|
""" |
|
try: |
|
logger.info(f"Scraping full content from: {url}") |
|
|
|
content = "" |
|
|
|
if scraper == "bs4": |
|
session = requests_retry_session() |
|
response = session.get(url, timeout=timeout) |
|
response.raise_for_status() |
|
soup = BeautifulSoup(response.content, 'html.parser') |
|
|
|
|
|
main_content = ( |
|
soup.find('main') or |
|
soup.find('article') or |
|
soup.find('div', class_='content') |
|
) |
|
|
|
content = main_content.get_text(strip=True, separator='\n') if main_content else soup.get_text(strip=True, separator='\n') |
|
|
|
elif scraper == "trafilatura": |
|
content = scrape_with_trafilatura(url, max_chars, timeout) |
|
|
|
elif scraper == "scrapy": |
|
content = scrape_with_scrapy(url, timeout) |
|
|
|
elif scraper == "newspaper": |
|
article = Article(url) |
|
article.download() |
|
article.parse() |
|
content = article.text |
|
|
|
else: |
|
logger.error(f"Unknown scraper: {scraper}") |
|
return "" |
|
|
|
|
|
if content: |
|
content = " ".join(content.split()) |
|
return content[:max_chars] if max_chars else content |
|
|
|
return "" |
|
|
|
except requests.Timeout: |
|
logger.error(f"Timeout error while scraping {url}") |
|
return "" |
|
except Exception as e: |
|
logger.error(f"Error scraping full content from {url}: {e}") |
|
return "" |
|
|
|
def llm_summarize(json_input, llm_client, temperature=0.2): |
|
system_prompt = """You are Sentinel, a world-class Financial analysis AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them.""" |
|
|
|
user_prompt = f""" |
|
Please provide a comprehensive summary based on the following JSON input: |
|
{json_input} |
|
|
|
Instructions: |
|
1. Analyze the query and the provided documents. |
|
2. Write a detailed, long, and complete research document that is informative and relevant to the user's query. |
|
3. Use an unbiased and professional tone in your response. |
|
4. Do not repeat text verbatim from the input. |
|
5. Provide the answer in the response itself. |
|
6. You can use markdown to format your response. |
|
7. Use bullet points to list information where appropriate. |
|
8. Cite the answer using [number] notation along with the appropriate source URL embedded in the notation. |
|
9. Place these citations at the end of the relevant sentences. |
|
10. You can cite the same sentence multiple times if it's relevant to different parts of your answer. |
|
|
|
Your response should be detailed, informative, accurate, and directly relevant to the user's query.""" |
|
|
|
messages = [ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt} |
|
] |
|
|
|
try: |
|
response = llm_client.chat_completion( |
|
messages=messages, |
|
max_tokens=10000, |
|
temperature=temperature, |
|
frequency_penalty=1.2, |
|
top_p=0.9 |
|
) |
|
return response.choices[0].message.content.strip() |
|
except Exception as e: |
|
logger.error(f"Error in LLM summarization: {e}") |
|
return "Error: Unable to generate a summary. Please try again." |
|
|
|
def search_and_scrape(query, chat_history, num_results=5, scraper="bs4", max_chars=3000, time_range="", language="all", category="", |
|
engines=[], safesearch=2, method="GET", llm_temperature=0.2, timeout=5): |
|
try: |
|
|
|
rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature) |
|
logger.info(f"Rephrased Query: {rephrased_query}") |
|
|
|
if not rephrased_query or rephrased_query.lower() == "not_needed": |
|
logger.info("No need to perform search based on the rephrased query.") |
|
return "No search needed for the provided input." |
|
|
|
|
|
params = { |
|
'q': rephrased_query, |
|
'format': 'json', |
|
'time_range': time_range, |
|
'language': language, |
|
'category': category, |
|
'engines': ','.join(engines), |
|
'safesearch': safesearch |
|
} |
|
|
|
|
|
params = {k: v for k, v in params.items() if v != ""} |
|
|
|
|
|
if 'engines' not in params: |
|
params['engines'] = 'google' |
|
logger.info("No engines specified. Defaulting to 'google'.") |
|
|
|
|
|
headers = { |
|
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', |
|
'Accept': 'application/json, text/javascript, */*; q=0.01', |
|
'Accept-Language': 'en-US,en;q=0.5', |
|
'Origin': 'https://shreyas094-searxng-local.hf.space', |
|
'Referer': 'https://shreyas094-searxng-local.hf.space/', |
|
'DNT': '1', |
|
'Connection': 'keep-alive', |
|
'Sec-Fetch-Dest': 'empty', |
|
'Sec-Fetch-Mode': 'cors', |
|
'Sec-Fetch-Site': 'same-origin', |
|
} |
|
|
|
scraped_content = [] |
|
page = 1 |
|
while len(scraped_content) < num_results: |
|
|
|
params['pageno'] = page |
|
|
|
|
|
logger.info(f"Sending request to SearXNG for query: {rephrased_query} (Page {page})") |
|
session = requests_retry_session() |
|
|
|
try: |
|
if method.upper() == "GET": |
|
response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where()) |
|
else: |
|
response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where()) |
|
|
|
response.raise_for_status() |
|
except requests.exceptions.RequestException as e: |
|
logger.error(f"Error during SearXNG request: {e}") |
|
return f"An error occurred during the search request: {e}" |
|
|
|
search_results = response.json() |
|
logger.debug(f"SearXNG Response: {search_results}") |
|
|
|
results = search_results.get('results', []) |
|
if not results: |
|
logger.warning(f"No more results returned from SearXNG on page {page}.") |
|
break |
|
|
|
for result in results: |
|
if len(scraped_content) >= num_results: |
|
break |
|
|
|
url = result.get('url', '') |
|
title = result.get('title', 'No title') |
|
|
|
if not is_valid_url(url): |
|
logger.warning(f"Invalid URL: {url}") |
|
continue |
|
|
|
try: |
|
logger.info(f"Scraping content from: {url}") |
|
|
|
|
|
content = scrape_full_content(url, scraper, max_chars, timeout) |
|
|
|
if not content: |
|
logger.warning(f"Failed to scrape content from {url}") |
|
continue |
|
|
|
scraped_content.append({ |
|
"title": title, |
|
"url": url, |
|
"content": content, |
|
"scraper": scraper |
|
}) |
|
logger.info(f"Successfully scraped content from {url}. Total scraped: {len(scraped_content)}") |
|
except requests.exceptions.RequestException as e: |
|
logger.error(f"Error scraping {url}: {e}") |
|
except Exception as e: |
|
logger.error(f"Unexpected error while scraping {url}: {e}") |
|
|
|
page += 1 |
|
|
|
if not scraped_content: |
|
logger.warning("No content scraped from search results.") |
|
return "No content could be scraped from the search results." |
|
|
|
logger.info(f"Successfully scraped {len(scraped_content)} documents.") |
|
|
|
|
|
relevant_documents = [] |
|
unique_summaries = [] |
|
for doc in scraped_content: |
|
assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature) |
|
relevance, summary = assessment.split('\n', 1) |
|
|
|
if relevance.strip().lower() == "relevant: yes": |
|
summary_text = summary.replace("Summary: ", "").strip() |
|
|
|
if is_content_unique(summary_text, unique_summaries): |
|
relevant_documents.append({ |
|
"title": doc['title'], |
|
"url": doc['url'], |
|
"summary": summary_text, |
|
"scraper": doc['scraper'] |
|
}) |
|
unique_summaries.append(summary_text) |
|
else: |
|
logger.info(f"Skipping similar content: {doc['title']}") |
|
|
|
if not relevant_documents: |
|
logger.warning("No relevant and unique documents found.") |
|
return "No relevant and unique financial news found for the given query." |
|
logger.debug(f"Assessment result: {assessment}") |
|
|
|
|
|
reranked_docs = rerank_documents(rephrased_query, relevant_documents) |
|
|
|
if not reranked_docs: |
|
logger.warning("No documents remained after reranking.") |
|
return "No relevant financial news found after filtering and ranking." |
|
|
|
logger.info(f"Reranked and filtered to top {len(reranked_docs)} unique, finance-related documents.") |
|
|
|
|
|
for doc in reranked_docs[:num_results]: |
|
full_content = scrape_full_content(doc['url'], scraper, max_chars) |
|
doc['full_content'] = full_content |
|
|
|
|
|
llm_input = { |
|
"query": query, |
|
"documents": [ |
|
{ |
|
"title": doc['title'], |
|
"url": doc['url'], |
|
"summary": doc['summary'], |
|
"full_content": doc['full_content'] |
|
} for doc in reranked_docs[:num_results] |
|
] |
|
} |
|
|
|
|
|
llm_summary = llm_summarize(json.dumps(llm_input), client, temperature=llm_temperature) |
|
|
|
return llm_summary |
|
|
|
except Exception as e: |
|
logger.error(f"Unexpected error in search_and_scrape: {e}") |
|
return f"An unexpected error occurred during the search and scrape process: {e}" |
|
|
|
|
|
def chat_function(message, history, num_results, scraper, max_chars, time_range, language, category, engines, safesearch, method, llm_temperature): |
|
chat_history = "\n".join([f"{role}: {msg}" for role, msg in history]) |
|
|
|
response = search_and_scrape( |
|
query=message, |
|
chat_history=chat_history, |
|
num_results=num_results, |
|
scraper=scraper, |
|
max_chars=max_chars, |
|
time_range=time_range, |
|
language=language, |
|
category=category, |
|
engines=engines, |
|
safesearch=safesearch, |
|
method=method, |
|
llm_temperature=llm_temperature |
|
) |
|
|
|
yield response |
|
|
|
iface = gr.ChatInterface( |
|
chat_function, |
|
title="SearXNG Scraper for Financial News", |
|
description="Enter your query, and I'll search the web for the most recent and relevant financial news, scrape content, and provide summarized results.", |
|
theme=gr.Theme.from_hub("allenai/gradio-theme"), |
|
additional_inputs=[ |
|
gr.Slider(5, 20, value=10, step=1, label="Number of initial results"), |
|
gr.Dropdown(["bs4", "trafilatura", "scrapy", "newspaper"], value="newspaper", label="Scraping Method"), |
|
gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"), |
|
gr.Dropdown(["", "day", "week", "month", "year"], value="year", label="Time Range"), |
|
gr.Dropdown(["all", "en", "fr", "de", "es", "it", "nl", "pt", "pl", "ru", "zh"], value="en", label="Language"), |
|
gr.Dropdown(["", "general", "news", "images", "videos", "music", "files", "it", "science", "social media"], value="", label="Category"), |
|
gr.Dropdown( |
|
["google", "bing", "duckduckgo", "baidu", "yahoo", "qwant", "startpage"], |
|
multiselect=True, |
|
value=["google", "duckduckgo"], |
|
label="Engines" |
|
), |
|
gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"), |
|
gr.Radio(["GET", "POST"], value="POST", label="HTTP Method"), |
|
gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"), |
|
], |
|
additional_inputs_accordion=gr.Accordion("⚙️ Advanced Parameters", open=True), |
|
retry_btn="Retry", |
|
undo_btn="Undo", |
|
clear_btn="Clear", |
|
chatbot=gr.Chatbot( |
|
show_copy_button=True, |
|
likeable=True, |
|
layout="bubble", |
|
height=500, |
|
) |
|
) |
|
|
|
if __name__ == "__main__": |
|
logger.info("Starting the SearXNG Scraper for Financial News using ChatInterface with Advanced Parameters") |
|
iface.launch(share=True) |