|
import requests |
|
import gradio as gr |
|
from bs4 import BeautifulSoup |
|
import logging |
|
from urllib.parse import urlparse |
|
from requests.adapters import HTTPAdapter |
|
from requests.packages.urllib3.util.retry import Retry |
|
from trafilatura import fetch_url, extract |
|
import json |
|
from huggingface_hub import InferenceClient |
|
import random |
|
import time |
|
from sentence_transformers import SentenceTransformer, util |
|
import torch |
|
from datetime import datetime |
|
import os |
|
from dotenv import load_dotenv |
|
import certifi |
|
import random |
|
from tenacity import retry, stop_after_attempt, wait_exponential |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
SEARXNG_URL = 'https://shreyas094-searxng-local.hf.space/search' |
|
SEARXNG_KEY = 'f9f07f93b37b8483aadb5ba717f556f3a4ac507b281b4ca01e6c6288aa3e3ae5' |
|
|
|
|
|
HF_TOKEN = os.getenv('HF_TOKEN') |
|
client = InferenceClient( |
|
"mistralai/Mistral-Nemo-Instruct-2407", |
|
token=HF_TOKEN, |
|
) |
|
|
|
|
|
similarity_model = SentenceTransformer('all-MiniLM-L6-v2') |
|
|
|
|
|
|
|
def requests_retry_session( |
|
retries=0, |
|
backoff_factor=0.1, |
|
status_forcelist=(500, 502, 504), |
|
session=None, |
|
): |
|
session = session or requests.Session() |
|
retry = Retry( |
|
total=retries, |
|
read=retries, |
|
connect=retries, |
|
backoff_factor=backoff_factor, |
|
status_forcelist=status_forcelist, |
|
) |
|
adapter = HTTPAdapter(max_retries=retry) |
|
session.mount('http://', adapter) |
|
session.mount('https://', adapter) |
|
return session |
|
|
|
def is_valid_url(url): |
|
try: |
|
result = urlparse(url) |
|
return all([result.scheme, result.netloc]) |
|
except ValueError: |
|
return False |
|
|
|
class ScrapingError(Exception): |
|
def __init__(self, message, status_code=None): |
|
self.message = message |
|
self.status_code = status_code |
|
super().__init__(self.message) |
|
|
|
def get_random_user_agent(include_searx=False): |
|
user_agents = [ |
|
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', |
|
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Safari/605.1.15', |
|
|
|
] |
|
|
|
searx_agent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' |
|
|
|
if include_searx: |
|
return searx_agent |
|
else: |
|
return random.choice(user_agents) |
|
|
|
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10)) |
|
def scrape_with_bs4(url, session): |
|
try: |
|
headers = {'User-Agent': get_random_user_agent()} |
|
response = session.get(url, timeout=15, headers=headers) |
|
response.raise_for_status() |
|
|
|
soup = BeautifulSoup(response.content, 'html.parser') |
|
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content') |
|
|
|
if main_content: |
|
content = main_content.get_text(strip=True) |
|
else: |
|
content = soup.get_text(strip=True) |
|
|
|
return {'success': True, 'content': content} |
|
except requests.exceptions.HTTPError as e: |
|
if e.response.status_code == 403: |
|
logger.warning(f"403 Forbidden error for {url}. Retrying with backoff.") |
|
raise ScrapingError("403 Forbidden", status_code=403) |
|
logger.error(f"HTTP error scraping {url}: {e}") |
|
return {'success': False, 'error': str(e), 'status_code': e.response.status_code} |
|
except requests.exceptions.Timeout: |
|
logger.error(f"Timeout error scraping {url}") |
|
return {'success': False, 'error': 'Timeout'} |
|
except requests.exceptions.ConnectionError: |
|
logger.error(f"Connection error scraping {url}") |
|
return {'success': False, 'error': 'Connection Error'} |
|
except Exception as e: |
|
logger.error(f"Unexpected error scraping {url}: {e}") |
|
return {'success': False, 'error': str(e)} |
|
|
|
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10)) |
|
def scrape_with_trafilatura(url): |
|
try: |
|
downloaded = fetch_url(url) |
|
if downloaded is None: |
|
raise ScrapingError("Failed to download content") |
|
content = extract(downloaded) |
|
if content is None: |
|
raise ScrapingError("Failed to extract content") |
|
return {'success': True, 'content': content} |
|
except ScrapingError as e: |
|
logger.error(f"Scraping error for {url}: {e}") |
|
return {'success': False, 'error': str(e)} |
|
except Exception as e: |
|
logger.error(f"Unexpected error scraping {url} with Trafilatura: {e}") |
|
return {'success': False, 'error': str(e)} |
|
|
|
def rephrase_query(chat_history, query, temperature=0.2): |
|
system_prompt = """You are a highly intelligent conversational chatbot. Your task is to analyze the given context and new query, then decide whether to rephrase the query with or without incorporating the context. Follow these steps: |
|
1. Determine if the new query is a continuation of the previous conversation or an entirely new topic. |
|
2. If it's a continuation, rephrase the query by incorporating relevant information from the context to make it more specific and contextual. |
|
3. If it's a new topic, rephrase the query to make it more appropriate for a web search, focusing on clarity and accuracy without using the previous context. |
|
4. Provide ONLY the rephrased query without any additional explanation or reasoning.""" |
|
|
|
user_prompt = f""" |
|
Context: |
|
{chat_history} |
|
|
|
New query: {query} |
|
|
|
Rephrased query: |
|
""" |
|
|
|
messages = [ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt} |
|
] |
|
|
|
try: |
|
logger.info(f"Sending rephrasing request to LLM with temperature {temperature}") |
|
response = client.chat_completion( |
|
messages=messages, |
|
max_tokens=150, |
|
temperature=temperature |
|
) |
|
logger.info("Received rephrased query from LLM") |
|
rephrased_question = response.choices[0].message.content.strip() |
|
|
|
|
|
if (rephrased_question.startswith('"') and rephrased_question.endswith('"')) or \ |
|
(rephrased_question.startswith("'") and rephrased_question.endswith("'")): |
|
rephrased_question = rephrased_question[1:-1].strip() |
|
|
|
logger.info(f"Rephrased Query (cleaned): {rephrased_question}") |
|
return rephrased_question |
|
except Exception as e: |
|
logger.error(f"Error rephrasing query with LLM: {e}") |
|
return query |
|
|
|
def rerank_documents(query, documents): |
|
try: |
|
|
|
query_embedding = similarity_model.encode(query, convert_to_tensor=True) |
|
doc_summaries = [doc['summary'] for doc in documents] |
|
|
|
if not doc_summaries: |
|
logger.warning("No document summaries to rerank.") |
|
return documents |
|
|
|
doc_embeddings = similarity_model.encode(doc_summaries, convert_to_tensor=True) |
|
|
|
|
|
cosine_scores = util.cos_sim(query_embedding, doc_embeddings)[0] |
|
|
|
|
|
dot_product_scores = torch.matmul(query_embedding, doc_embeddings.T) |
|
|
|
|
|
if dot_product_scores.dim() == 0: |
|
dot_product_scores = dot_product_scores.unsqueeze(0) |
|
|
|
|
|
scored_documents = list(zip(documents, cosine_scores, dot_product_scores)) |
|
|
|
|
|
scored_documents.sort(key=lambda x: x[1], reverse=True) |
|
|
|
|
|
reranked_docs = [doc[0] for doc in scored_documents[:5]] |
|
logger.info(f"Reranked to top {len(reranked_docs)} documents.") |
|
return reranked_docs |
|
except Exception as e: |
|
logger.error(f"Error during reranking documents: {e}") |
|
return documents[:5] |
|
|
|
def compute_similarity(text1, text2): |
|
|
|
embedding1 = similarity_model.encode(text1, convert_to_tensor=True) |
|
embedding2 = similarity_model.encode(text2, convert_to_tensor=True) |
|
|
|
|
|
cosine_similarity = util.pytorch_cos_sim(embedding1, embedding2) |
|
|
|
return cosine_similarity.item() |
|
|
|
def is_content_unique(new_content, existing_contents, similarity_threshold=0.8): |
|
for existing_content in existing_contents: |
|
similarity = compute_similarity(new_content, existing_content) |
|
if similarity > similarity_threshold: |
|
return False |
|
return True |
|
|
|
def assess_relevance_and_summarize(llm_client, query, document, temperature=0.2): |
|
system_prompt = """You are a financial analyst AI assistant. Your task is to assess whether the given text is relevant to the user's query from a financial perspective and provide a brief summary if it is relevant.""" |
|
|
|
user_prompt = f""" |
|
Query: {query} |
|
|
|
Document Content: |
|
{document['content']} |
|
|
|
Instructions: |
|
1. Assess if the document is relevant to the query from a financial analyst's perspective. |
|
2. If relevant, summarize the main points in 1-2 sentences. |
|
3. If not relevant, simply state "Not relevant". |
|
|
|
Your response should be in the following format: |
|
Relevant: [Yes/No] |
|
Summary: [Your 1-2 sentence summary if relevant, or "Not relevant" if not] |
|
|
|
Remember to focus on financial aspects and implications in your assessment and summary. |
|
""" |
|
|
|
messages = [ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt} |
|
] |
|
|
|
try: |
|
response = llm_client.chat_completion( |
|
messages=messages, |
|
max_tokens=150, |
|
temperature=temperature |
|
) |
|
return response.choices[0].message.content.strip() |
|
except Exception as e: |
|
logger.error(f"Error assessing relevance and summarizing with LLM: {e}") |
|
return "Error: Unable to assess relevance and summarize" |
|
|
|
def scrape_full_content(url, scraper="trafilatura", max_chars=3000): |
|
try: |
|
logger.info(f"Scraping full content from: {url}") |
|
|
|
if scraper == "bs4": |
|
session = requests_retry_session() |
|
response = session.get(url, timeout=10) |
|
response.raise_for_status() |
|
soup = BeautifulSoup(response.content, 'html.parser') |
|
|
|
|
|
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content') |
|
|
|
if main_content: |
|
content = main_content.get_text(strip=True, separator='\n') |
|
else: |
|
content = soup.get_text(strip=True, separator='\n') |
|
else: |
|
downloaded = fetch_url(url) |
|
content = extract(downloaded, include_comments=False, include_tables=True, no_fallback=False) |
|
|
|
|
|
return content[:max_chars] if content else "" |
|
except Exception as e: |
|
logger.error(f"Error scraping full content from {url}: {e}") |
|
return "" |
|
|
|
|
|
def rate_limited_scraping(url, scraper_func, *args, **kwargs): |
|
time.sleep(random.uniform(1, 3)) |
|
return scraper_func(url, *args, **kwargs) |
|
|
|
def llm_summarize(query, documents, llm_client, temperature=0.2): |
|
system_prompt = """You are Sentinel, a world class Financial analysis AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them.""" |
|
|
|
|
|
context = "\n\n".join([f"Document {i+1}:\nTitle: {doc['title']}\nURL: {doc['url']}\n(SCRAPED CONTENT)\n{doc['full_content']}\n(/SCRAPED CONTENT)" for i, doc in enumerate(documents)]) |
|
|
|
user_prompt = f""" |
|
Query: {query} |
|
|
|
Context: {context} |
|
Instructions: Write a detailed, long and complete research document that is informative and relevant to the user, who is a financial analyst, query based on provided context (the context consists of search results containing a brief description of the content of that page). You must use this context to answer the user's query in the best way possible. |
|
Use an unbiased and writer tone in your response. Do not repeat the text. You must provide the answer in the response itself. If the user asks for links you can provide them. |
|
If the user asks to summarize content from some links, you will be provided the entire content of the page inside the (SCRAPED CONTENT) block. |
|
You can then use this content to summarize the text.Your responses should be detailed in length be informative, accurate and relevant to the user's query. |
|
You can use markdowns to format your response. You should use bullet points to list the information. |
|
Make sure the answer is long and is informative in a research document style. You have to cite the answer using [number] notation along with the appropriate source URL embedded in the notation. |
|
You must cite the sentences with their relevant context number. |
|
You must cite each and every part of the answer so the user can know where the information is coming from. Place these citations at the end of that particular sentence. |
|
You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2]. |
|
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. |
|
The number refers to the number of the search result (passed in the context) used to generate that part of the answer. Anything inside the following (SCRAPED CONTENT) block provided below is for your knowledge returned by the search engine and is not shared by the user. |
|
You have to answer question on the basis of it and cite the relevant information from it but you do not have to talk about the context in your response. |
|
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'. |
|
You do not need to do this for summarization tasks. Anything between the (SCRAPED CONTENT) is retrieved from a search engine and is not a part of the conversation with the user. |
|
|
|
Please provide a comprehensive summary based on the above instructions: |
|
""" |
|
|
|
messages = [ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt} |
|
] |
|
|
|
try: |
|
response = llm_client.chat_completion( |
|
messages=messages, |
|
max_tokens=5000, |
|
temperature=temperature |
|
) |
|
return response.choices[0].message.content.strip() |
|
except Exception as e: |
|
logger.error(f"Error in LLM summarization: {e}") |
|
return "Error: Unable to generate a summary. Please try again." |
|
|
|
def search_and_scrape(query, chat_history, num_results=5, scraper="trafilatura", max_chars=3000, time_range="", language="all", category="", |
|
engines=[], safesearch=2, method="GET", llm_temperature=0.2): |
|
try: |
|
|
|
rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature) |
|
logger.info(f"Rephrased Query: {rephrased_query}") |
|
|
|
if not rephrased_query or rephrased_query.lower() == "not_needed": |
|
logger.info("No need to perform search based on the rephrased query.") |
|
return "No search needed for the provided input." |
|
|
|
|
|
params = { |
|
'q': rephrased_query, |
|
'format': 'json', |
|
'num_results': num_results, |
|
'time_range': time_range, |
|
'language': language, |
|
'category': category, |
|
'engines': ','.join(engines), |
|
'safesearch': safesearch |
|
} |
|
|
|
|
|
params = {k: v for k, v in params.items() if v != ""} |
|
|
|
|
|
if 'engines' not in params: |
|
params['engines'] = 'google' |
|
logger.info("No engines specified. Defaulting to 'google'.") |
|
|
|
|
|
headers = { |
|
'User-Agent': get_random_user_agent(include_searx=True), |
|
'Accept': 'application/json, text/javascript, */*; q=0.01', |
|
'Accept-Language': 'en-US,en;q=0.5', |
|
'Origin': 'https://shreyas094-searxng-local.hf.space', |
|
'Referer': 'https://shreyas094-searxng-local.hf.space/', |
|
'DNT': '1', |
|
'Connection': 'keep-alive', |
|
'Sec-Fetch-Dest': 'empty', |
|
'Sec-Fetch-Mode': 'cors', |
|
'Sec-Fetch-Site': 'same-origin', |
|
} |
|
|
|
|
|
logger.info(f"Sending request to SearXNG for query: {rephrased_query}") |
|
session = requests_retry_session() |
|
|
|
try: |
|
if method.upper() == "GET": |
|
response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where()) |
|
else: |
|
response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where()) |
|
|
|
response.raise_for_status() |
|
except requests.exceptions.RequestException as e: |
|
logger.error(f"Error during SearXNG request: {e}") |
|
return f"An error occurred during the search request: {e}" |
|
|
|
search_results = response.json() |
|
logger.debug(f"SearXNG Response: {search_results}") |
|
|
|
num_received = len(search_results.get('results', [])) |
|
logger.info(f"Received {num_received} results from SearXNG") |
|
|
|
if num_received == 0: |
|
logger.warning("No results returned from SearXNG.") |
|
return "No results found for the given query." |
|
|
|
scraped_content = [] |
|
|
|
for result in search_results.get('results', [])[:num_results]: |
|
url = result.get('url', '') |
|
title = result.get('title', 'No title') |
|
|
|
if not is_valid_url(url): |
|
logger.warning(f"Invalid URL: {url}") |
|
continue |
|
|
|
try: |
|
logger.info(f"Scraping content from: {url}") |
|
|
|
if scraper == "bs4": |
|
content = scrape_with_bs4(url, session) |
|
else: |
|
content = scrape_with_trafilatura(url) |
|
|
|
|
|
if isinstance(content, dict) and 'content' in content: |
|
content['content'] = content['content'][:max_chars] |
|
elif isinstance(content, str): |
|
content = content[:max_chars] |
|
else: |
|
logger.warning(f"Unexpected content type for URL: {url}") |
|
content = str(content)[:max_chars] |
|
|
|
scraped_content.append({ |
|
"title": title, |
|
"url": url, |
|
"content": content, |
|
"scraper": scraper |
|
}) |
|
except requests.exceptions.RequestException as e: |
|
logger.error(f"Error scraping {url}: {e}") |
|
except Exception as e: |
|
logger.error(f"Unexpected error while scraping {url}: {e}") |
|
|
|
if not scraped_content: |
|
logger.warning("No content scraped from search results.") |
|
return "No content could be scraped from the search results." |
|
|
|
|
|
relevant_documents = [] |
|
unique_summaries = [] |
|
for doc in scraped_content: |
|
assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature) |
|
relevance, summary = assessment.split('\n', 1) |
|
|
|
if relevance.strip().lower() == "relevant: yes": |
|
summary_text = summary.replace("Summary: ", "").strip() |
|
|
|
if is_content_unique(summary_text, unique_summaries): |
|
relevant_documents.append({ |
|
"title": doc['title'], |
|
"url": doc['url'], |
|
"summary": summary_text, |
|
"scraper": doc['scraper'] |
|
}) |
|
unique_summaries.append(summary_text) |
|
else: |
|
logger.info(f"Skipping similar content: {doc['title']}") |
|
|
|
if not relevant_documents: |
|
logger.warning("No relevant and unique documents found.") |
|
return "No relevant and unique financial news found for the given query." |
|
|
|
|
|
reranked_docs = rerank_documents(rephrased_query, relevant_documents) |
|
|
|
if not reranked_docs: |
|
logger.warning("No documents remained after reranking.") |
|
return "No relevant financial news found after filtering and ranking." |
|
|
|
logger.info(f"Reranked and filtered to top {len(reranked_docs)} unique, finance-related documents.") |
|
|
|
|
|
for doc in reranked_docs[:5]: |
|
full_content = scrape_full_content(doc['url'], scraper, max_chars) |
|
doc['full_content'] = full_content |
|
|
|
|
|
llm_summary = llm_summarize(query, reranked_docs[:5], client, temperature=llm_temperature) |
|
|
|
return llm_summary |
|
|
|
except Exception as e: |
|
logger.error(f"Unexpected error in search_and_scrape: {e}") |
|
return f"An unexpected error occurred during the search and scrape process: {e}" |
|
|
|
|
|
def chat_function(message, history, num_results, scraper, max_chars, time_range, language, category, engines, safesearch, method, llm_temperature): |
|
chat_history = "\n".join([f"{role}: {msg}" for role, msg in history]) |
|
|
|
response = search_and_scrape( |
|
query=message, |
|
chat_history=chat_history, |
|
num_results=num_results, |
|
scraper=scraper, |
|
max_chars=max_chars, |
|
time_range=time_range, |
|
language=language, |
|
category=category, |
|
engines=engines, |
|
safesearch=safesearch, |
|
method=method, |
|
llm_temperature=llm_temperature |
|
) |
|
|
|
yield response |
|
|
|
iface = gr.ChatInterface( |
|
chat_function, |
|
title="SearXNG Scraper for Financial News", |
|
description="Enter your query, and I'll search the web for the most recent and relevant financial news, scrape content, and provide summarized results.", |
|
additional_inputs=[ |
|
gr.Slider(5, 20, value=10, step=1, label="Number of initial results"), |
|
gr.Dropdown(["bs4", "trafilatura"], value="trafilatura", label="Scraping Method"), |
|
gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"), |
|
gr.Dropdown(["", "day", "week", "month", "year"], value="year", label="Time Range"), |
|
gr.Dropdown(["all", "en", "fr", "de", "es", "it", "nl", "pt", "pl", "ru", "zh"], value="en", label="Language"), |
|
gr.Dropdown(["", "general", "news", "images", "videos", "music", "files", "it", "science", "social media"], value="", label="Category"), |
|
gr.Dropdown( |
|
["google", "bing", "duckduckgo", "baidu", "yahoo", "qwant", "startpage"], |
|
multiselect=True, |
|
value=["google", "duckduckgo"], |
|
label="Engines" |
|
), |
|
gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"), |
|
gr.Radio(["GET", "POST"], value="POST", label="HTTP Method"), |
|
gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"), |
|
], |
|
additional_inputs_accordion=gr.Accordion("⚙️ Advanced Parameters", open=True), |
|
retry_btn="Retry", |
|
undo_btn="Undo", |
|
clear_btn="Clear", |
|
chatbot=gr.Chatbot( |
|
show_copy_button=True, |
|
likeable=True, |
|
layout="bubble", |
|
height=400, |
|
) |
|
) |
|
|
|
if __name__ == "__main__": |
|
logger.info("Starting the SearXNG Scraper for Financial News using ChatInterface with Advanced Parameters") |
|
iface.launch(share=True) |
|
|