import requests import gradio as gr import logging from urllib.parse import urlparse from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry from requests.exceptions import Timeout from urllib.request import urlopen, Request import json from huggingface_hub import InferenceClient import random import time from sentence_transformers import SentenceTransformer, util import torch from datetime import datetime import os from dotenv import load_dotenv import certifi import requests from newspaper import Article import PyPDF2 import io import requests import random import datetime from groq import Groq import os from mistralai import Mistral from dotenv import load_dotenv import re from typing import List, Tuple from rank_bm25 import BM25Okapi from typing import List, Dict import numpy as np from math import log from collections import Counter import numpy as np from typing import List, Dict, Tuple import datetime from abc import ABC, abstractmethod from typing import List, Dict, Any # Automatically get the current year CURRENT_YEAR = datetime.datetime.now().year # Load environment variables from a .env file load_dotenv() # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # SearXNG instance details SEARXNG_URL = os.getenv("SEARXNG_URL") SEARXNG_KEY = os.getenv("SEARXNG_KEY") logger.info(f"SearXNG URL: {SEARXNG_URL}") logger.info(f"SearXNG Key: {SEARXNG_KEY}") # ... other environment variables ... CUSTOM_LLM = os.getenv("CUSTOM_LLM") CUSTOM_LLM_DEFAULT_MODEL = os.getenv("CUSTOM_LLM_DEFAULT_MODEL") logger.info(f"CUSTOM_LLM: {CUSTOM_LLM}") logger.info(f"CUSTOM_LLM_DEFAULT_MODEL: {CUSTOM_LLM_DEFAULT_MODEL}") # Define the fetch_custom_models function here def fetch_custom_models(): if not CUSTOM_LLM: return [] try: response = requests.get(f"{CUSTOM_LLM}/v1/models") response.raise_for_status() models = response.json().get("data", []) return [model["id"] for model in models] except Exception as e: logger.error(f"Error fetching custom models: {e}") return [] # Fetch custom models and determine the default model custom_models = fetch_custom_models() all_models = ["huggingface", "groq", "mistral"] + custom_models # Determine the default model default_model = CUSTOM_LLM_DEFAULT_MODEL if CUSTOM_LLM_DEFAULT_MODEL in all_models else "huggingface" logger.info(f"Default model selected: {default_model}") # Use the environment variable HF_TOKEN = os.getenv("HF_TOKEN") client = InferenceClient( "mistralai/Mistral-Small-Instruct-2409", token=HF_TOKEN, ) # Default API key for examples (replace with a dummy value or leave empty) GROQ_API_KEY = os.getenv("GROQ_API_KEY") # Initialize Groq client groq_client = Groq(api_key=GROQ_API_KEY) # Initialize Mistral client MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY") mistral_client = Mistral(api_key=MISTRAL_API_KEY) # Initialize the similarity model similarity_model = SentenceTransformer('all-MiniLM-L6-v2') # Step 1: Create a base class for AI models class AIModel(ABC): @abstractmethod def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str: pass # Step 2: Implement specific classes for each AI model class HuggingFaceModel(AIModel): def __init__(self, client): self.client = client def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str: response = self.client.chat_completion( messages=messages, max_tokens=max_tokens, temperature=temperature ) return response.choices[0].message.content.strip() class GroqModel(AIModel): def __init__(self, client): self.client = client def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str: response = self.client.chat.completions.create( messages=messages, model="llama-3.1-70b-versatile", max_tokens=max_tokens, temperature=temperature ) return response.choices[0].message.content.strip() class MistralModel(AIModel): def __init__(self, client): self.client = client def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str: response = self.client.chat.complete( model="open-mistral-nemo", messages=messages, max_tokens=max_tokens, temperature=temperature ) return response.choices[0].message.content.strip() # Step 3: Use a factory pattern to create model instances class CustomModel(AIModel): def __init__(self, model_name): self.model_name = model_name def generate_response(self, messages: List[Dict[str, str]], max_tokens: int, temperature: float) -> str: try: response = requests.post( f"{CUSTOM_LLM}/v1/chat/completions", json={ "model": self.model_name, "messages": messages, "max_tokens": max_tokens, "temperature": temperature } ) response.raise_for_status() return response.json()["choices"][0]["message"]["content"].strip() except Exception as e: logger.error(f"Error generating response from custom model: {e}") return "Error: Unable to generate response from custom model." class AIModelFactory: @staticmethod def create_model(model_name: str, client: Any = None) -> AIModel: if model_name == "huggingface": return HuggingFaceModel(client) elif model_name == "groq": return GroqModel(client) elif model_name == "mistral": return MistralModel(client) elif CUSTOM_LLM and model_name in fetch_custom_models(): return CustomModel(model_name) else: raise ValueError(f"Unsupported model: {model_name}") def determine_query_type(query: str, chat_history: str, ai_model: AIModel) -> str: system_prompt = """You are Sentinel, an intelligent AI agent tasked with determining whether a user query requires a web search or can be answered using your existing knowledge base. Your knowledge cutoff date is 2023, and the current year is 2024. Your task is to analyze the query and decide on the appropriate action. Instructions for Sentinel: 1. If the query is a general conversation starter, greeting, or can be answered with information from 2023 or earlier, classify it as "knowledge_base". 2. If the query requires information from 2024, up-to-date news, current events, or real-time data, classify it as "web_search". 3. For queries about ongoing events, trends, or situations that likely have significant updates in 2024, classify as "web_search". 4. Consider the chat history when making your decision. 5. Respond with ONLY "knowledge_base" or "web_search". Instructions for users (include this in your first interaction): "Hello! I'm Sentinel, your AI assistant. I can help you with various tasks and answer your questions. Here's how to get the best results: - My knowledge base is current up to 2023. For information up to that year, I can answer directly. - For any information, events, or data from 2024 onwards, I'll need to search the web for the most up-to-date results. - If you're asking about ongoing situations or need the very latest information, please mention that you need current data. - Feel free to ask follow-up questions or request clarification on any topic. - If you're unsure whether I need to search, you can ask 'Do you need to search the web for this?' How can I assist you today?" Examples: - "Hi, how are you?" -> "knowledge_base" - "What were the major events of 2023?" -> "knowledge_base" - "What's the latest news in the US?" -> "web_search" - "Can you explain quantum computing?" -> "knowledge_base" - "What are the current stock prices for Apple?" -> "web_search" - "Who won the 2024 Super Bowl?" -> "web_search" - "What were the key findings of the 2022 climate report?" -> "knowledge_base" """ user_prompt = f""" Chat history: {chat_history} Current query: {query} Determine if this query requires a web search or can be answered from the knowledge base. """ messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ] try: response = ai_model.generate_response( messages=messages, max_tokens=10, temperature=0.2 ) decision = response.strip().lower() return "web_search" if decision == "web_search" else "knowledge_base" except Exception as e: logger.error(f"Error determining query type: {e}") return "web_search" # Default to web search if there's an error def generate_ai_response(query: str, chat_history: str, ai_model: AIModel, temperature: float) -> str: system_prompt = """You are a helpful AI assistant. Provide a concise and informative response to the user's query based on your existing knowledge. Do not make up information or claim to have real-time data.""" user_prompt = f""" Chat history: {chat_history} Current query: {query} Please provide a response to the query. """ messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ] try: response = ai_model.generate_response( messages=messages, max_tokens=500, temperature=temperature ) return response except Exception as e: logger.error(f"Error generating AI response: {e}") return "I apologize, but I'm having trouble generating a response at the moment. Please try again later." # Set up a session with retry mechanism def requests_retry_session( retries=0, backoff_factor=0.1, status_forcelist=(500, 502, 504), session=None, ): session = session or requests.Session() retry = Retry( total=retries, read=retries, connect=retries, backoff_factor=backoff_factor, status_forcelist=status_forcelist, ) adapter = HTTPAdapter(max_retries=retry) session.mount('http://', adapter) session.mount('https://', adapter) return session def is_valid_url(url): try: result = urlparse(url) return all([result.scheme, result.netloc]) except ValueError: return False def scrape_pdf_content(url, max_chars=3000, timeout=5): try: logger.info(f"Scraping PDF content from: {url}") # Download the PDF file response = requests.get(url, timeout=timeout) response.raise_for_status() # Create a PDF reader object pdf_reader = PyPDF2.PdfReader(io.BytesIO(response.content)) # Extract text from all pages content = "" for page in pdf_reader.pages: content += page.extract_text() + "\n" # Limit the content to max_chars return content[:max_chars] if content else "" except requests.Timeout: logger.error(f"Timeout error while scraping PDF content from {url}") return "" except Exception as e: logger.error(f"Error scraping PDF content from {url}: {e}") return "" def scrape_with_newspaper(url): if url.lower().endswith('.pdf'): return scrape_pdf_content(url) logger.info(f"Starting to scrape with Newspaper3k: {url}") try: article = Article(url) article.download() article.parse() # Combine title and text content = f"Title: {article.title}\n\n" content += article.text # Add publish date if available if article.publish_date: content += f"\n\nPublish Date: {article.publish_date}" # Add authors if available if article.authors: content += f"\n\nAuthors: {', '.join(article.authors)}" # Add top image URL if available if article.top_image: content += f"\n\nTop Image URL: {article.top_image}" return content except Exception as e: logger.error(f"Error scraping {url} with Newspaper3k: {e}") return "" def rephrase_query(chat_history, query, temperature=0.2): system_prompt = """You are a highly intelligent and context-aware conversational assistant. Your tasks are as follows: 1. Determine if the new query is a continuation of the previous conversation or an entirely new topic. 2. For both continuations and new topics: a. **Entity Identification and Quotation**: - Analyze the user's query to identify the main entities (e.g., organizations, brands, products, locations). - For each identified entity, enclose ONLY the entity itself in double quotes within the query. - If no identifiable entities are found, proceed without adding quotes. b. **Query Preservation**: - Maintain the entire original query, including any parts after commas or other punctuation. - Do not remove or truncate any part of the original query. 3. If it's a continuation: - Incorporate relevant information from the context to make the query more specific and contextual. - Ensure that entities from the previous context are properly quoted if they appear in the rephrased query. 4. For both continuations and new topics: - First, check if the query contains words indicating current information (e.g., "today", "now", "current", "latest"): - If present, do NOT add any date operators to the query - Otherwise, if the query mentions a specific time period (e.g., a quarter, year, or date range): - Add appropriate "after: " operators to the end of the rephrased query. - Use the format "after: YYYY" for date ranges. - If no specific time period is mentioned and no current-time indicators are present: - Append "after: {CURRENT_YEAR}" to the end of the rephrased query. - Do not use quotes or the "+" operator when adding dates. 5. **Output**: - Return ONLY the rephrased query, ensuring it is concise, clear, and contextually accurate. - Do not include any additional commentary or explanation. ### Example Scenarios **Scenario 1: Query About Current Information** - **User Query**: "What's the stock price of Apple today?" - **Rephrased Query**: "What's the stock price of \"Apple\" today" **Scenario 2: New Topic with Specific Quarter** - **User Query**: "How did Bank of America perform during Q2 2024?" - **Rephrased Query**: "How did \"Bank of America\" perform during Q2 2024 after: 2024" **Scenario 3: Continuation with Date Range** - **Previous Query**: "What were Apple's sales figures for 2023?" - **User Query**: "How about for the first half of 2024?" - **Rephrased Query**: "How about \"Apple\"'s sales figures for the first half of 2024 after: 2024" **Scenario 4: Current Status Query** - **User Query**: "What is the current market share of Toyota and Honda in the US?" - **Rephrased Query**: "What is the current market share of \"Toyota\" and \"Honda\" in the \"US\"" **Scenario 5: Current Status Query** - **User Query**: "Bank of America Q2 2024 earnings?" - **Rephrased Query**: "\"Bank of America\" Q2 2024 earnings after: 2024"" """ # Create the user prompt with the chat history and current query user_prompt = f"""Conversation context: {chat_history} New query: {query} Current year: {CURRENT_YEAR} Rephrased query:""" messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ] try: logger.info(f"Sending rephrasing request to LLM with temperature {temperature}") response = client.chat_completion( messages=messages, max_tokens=150, temperature=temperature ) logger.info("Received rephrased query from LLM") rephrased_question = response.choices[0].message.content.strip() # Remove surrounding quotes if present if (rephrased_question.startswith('"') and rephrased_question.endswith('"')) or \ (rephrased_question.startswith("'") and rephrased_question.endswith("'")): rephrased_question = rephrased_question[1:-1].strip() logger.info(f"Rephrased Query (cleaned): {rephrased_question}") return rephrased_question except Exception as e: logger.error(f"Error rephrasing query with LLM: {e}") return query # Fallback to original query if rephrasing fails class BM25: def __init__(self, k1: float = 1.5, b: float = 0.75): self.k1 = k1 # term frequency saturation parameter self.b = b # length normalization parameter self.corpus_size = 0 self.doc_lengths = [] self.avgdl = 0 self.doc_freqs = [] self.idf = {} self.doc_vectors = [] def fit(self, corpus: List[str]): """ Fit BM25 parameters to the corpus Args: corpus: List of document strings """ self.corpus_size = len(corpus) # Calculate document lengths and average document length self.doc_lengths = [] for doc in corpus: words = doc.lower().split() self.doc_lengths.append(len(words)) self.avgdl = sum(self.doc_lengths) / self.corpus_size # Calculate document frequencies df = Counter() self.doc_vectors = [] for doc in corpus: words = doc.lower().split() doc_words = set(words) for word in doc_words: df[word] += 1 self.doc_vectors.append(Counter(words)) # Calculate inverse document frequency self.idf = {} for word, freq in df.items(): self.idf[word] = log((self.corpus_size - freq + 0.5) / (freq + 0.5)) def get_scores(self, query: str) -> np.ndarray: """ Calculate BM25 scores for the query against all documents Args: query: Query string Returns: numpy array of scores for each document """ scores = np.zeros(self.corpus_size) query_words = query.lower().split() for word in query_words: if word not in self.idf: continue qi = self.idf[word] for idx, doc_vector in enumerate(self.doc_vectors): if word not in doc_vector: continue score = (qi * doc_vector[word] * (self.k1 + 1) / (doc_vector[word] + self.k1 * (1 - self.b + self.b * self.doc_lengths[idx] / self.avgdl))) scores[idx] += score return scores def prepare_documents_for_bm25(documents: List[Dict]) -> Tuple[List[str], List[Dict]]: """ Prepare documents for BM25 ranking by combining title and content Args: documents: List of document dictionaries Returns: Tuple of (document texts, original documents) """ doc_texts = [] for doc in documents: # Combine title and content for better matching doc_text = f"{doc['title']} {doc['content']}" doc_texts.append(doc_text) return doc_texts, documents # Now modify the rerank_documents_with_priority function to include BM25 ranking def rerank_documents(query: str, documents: List[Dict], similarity_threshold: float = 0.95, max_results: int = 5) -> List[Dict]: try: if not documents: logger.warning("No documents to rerank.") return documents # Step 1: Prepare documents for BM25 doc_texts, original_docs = prepare_documents_for_bm25(documents) # Step 2: Initialize and fit BM25 bm25 = BM25() bm25.fit(doc_texts) # Step 3: Get BM25 scores bm25_scores = bm25.get_scores(query) # Step 4: Get semantic similarity scores query_embedding = similarity_model.encode(query, convert_to_tensor=True) doc_summaries = [doc['summary'] for doc in documents] doc_embeddings = similarity_model.encode(doc_summaries, convert_to_tensor=True) semantic_scores = util.cos_sim(query_embedding, doc_embeddings)[0] # Step 5: Combine scores (normalize first) bm25_scores_norm = (bm25_scores - np.min(bm25_scores)) / (np.max(bm25_scores) - np.min(bm25_scores)) semantic_scores_norm = (semantic_scores - torch.min(semantic_scores)) / (torch.max(semantic_scores) - torch.min(semantic_scores)) # Combine scores with weights (0.4 for BM25, 0.6 for semantic similarity) combined_scores = 0.4 * bm25_scores_norm + 0.6 * semantic_scores_norm.numpy() # Create scored documents with combined scores scored_documents = list(zip(documents, combined_scores)) # Sort by combined score (descending) scored_documents.sort(key=lambda x: x[1], reverse=True) # Filter similar documents filtered_docs = [] added_contents = [] for doc, score in scored_documents: if score < 0.3: # Minimum relevance threshold continue # Check similarity with already selected documents doc_embedding = similarity_model.encode(doc['summary'], convert_to_tensor=True) is_similar = False for content in added_contents: content_embedding = similarity_model.encode(content, convert_to_tensor=True) similarity = util.pytorch_cos_sim(doc_embedding, content_embedding) if similarity > similarity_threshold: is_similar = True break if not is_similar: filtered_docs.append(doc) added_contents.append(doc['summary']) if len(filtered_docs) >= max_results: break logger.info(f"Reranked and filtered to {len(filtered_docs)} unique documents using BM25 and semantic similarity.") return filtered_docs except Exception as e: logger.error(f"Error during reranking documents: {e}") return documents[:max_results] # Fallback to first max_results documents if reranking fails def compute_similarity(text1, text2): # Encode the texts embedding1 = similarity_model.encode(text1, convert_to_tensor=True) embedding2 = similarity_model.encode(text2, convert_to_tensor=True) # Compute cosine similarity cosine_similarity = util.pytorch_cos_sim(embedding1, embedding2) return cosine_similarity.item() def is_content_unique(new_content, existing_contents, similarity_threshold=0.8): for existing_content in existing_contents: similarity = compute_similarity(new_content, existing_content) if similarity > similarity_threshold: return False return True def assess_relevance_and_summarize(llm_client, query, document, temperature=0.2): system_prompt = """You are a world-class AI assistant specializing in news analysis and document summarization. Your task is to provide a comprehensive and detailed summary of the given document that captures its key points and relevance to the user's query.""" user_prompt = f""" Query: {query} Document Title: {document['title']} Document Content: {document['content'][:1000]} # Limit to first 1000 characters for efficiency Instructions: 1. Provide a detailed summary that captures the unique aspects of this document. Include: - Key facts and figures - Dates of events or announcements - Names of important entities mentioned - Any metrics or changes reported - The potential impact or significance of the content 2. Focus on aspects that are most relevant to the user's query 3. Ensure the summary is distinctive and highlights what makes this particular document unique 4. Include any specific context that helps understand the document's significance Your response should be in the following format: Summary: [Your detailed summary] Remember to: - Highlight the most important information first - Include specific numbers, dates, and facts when available - Connect the information to the user's query where relevant - Focus on what makes this document unique or noteworthy """ messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ] try: response = llm_client.chat_completion( messages=messages, max_tokens=300, temperature=temperature, top_p=0.9, frequency_penalty=1.4 ) summary = response.choices[0].message.content.strip() # If the summary starts with "Summary: ", remove it if summary.startswith("Summary: "): summary = summary[9:].strip() # Always return format as if document was relevant return f"Relevant: Yes\nSummary: {summary}" except Exception as e: logger.error(f"Error summarizing with LLM: {e}") return f"Relevant: Yes\nSummary: Error occurred while summarizing the document: {str(e)}" def scrape_full_content(url, max_chars=3000, timeout=5, use_pydf2=True): try: logger.info(f"Scraping full content from: {url}") # Check if the URL ends with .pdf if url.lower().endswith('.pdf'): if use_pydf2: return scrape_pdf_content(url, max_chars, timeout) else: logger.info(f"Skipping PDF document: {url}") return None # Use Newspaper3k for non-PDF content content = scrape_with_newspaper(url) # Limit the content to max_chars return content[:max_chars] if content else "" except requests.Timeout: logger.error(f"Timeout error while scraping full content from {url}") return "" except Exception as e: logger.error(f"Error scraping full content from {url}: {e}") return "" def llm_summarize(json_input, model, temperature=0.2): system_prompt = """You are Sentinel, a world-class AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them.""" user_prompt = f""" Please provide a comprehensive summary based on the following JSON input: {json_input} Instructions: 1. Analyze the query and the provided documents. 2. Write a detailed, long, and complete research document that is informative and relevant to the user's query based on provided context (the context consists of search results containing a brief description of the content of that page). 3. You must use this context to answer the user's query in the best way possible. Use an unbiased and journalistic tone in your response. Do not repeat the text. 4. Use an unbiased and professional tone in your response. 5. Do not repeat text verbatim from the input. 6. Provide the answer in the response itself. 7. You can use markdown to format your response. 8. Use bullet points to list information where appropriate. 9. Cite the answer using [number] notation along with the appropriate source URL embedded in the notation. 10. Place these citations at the end of the relevant sentences. 11. You can cite the same sentence multiple times if it's relevant to different parts of your answer. 12. Make sure the answer is not short and is informative. 13. Your response should be detailed, informative, accurate, and directly relevant to the user's query.""" messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ] try: if model == "groq": response = groq_client.chat.completions.create( messages=messages, model="llama-3.1-70b-versatile", max_tokens=5500, temperature=temperature, top_p=0.9, presence_penalty=1.2, stream=False ) return response.choices[0].message.content.strip() elif model == "mistral": response = mistral_client.chat.complete( model="open-mistral-nemo", messages=messages, max_tokens=10000, temperature=temperature, top_p=0.9, stream=False ) return response.choices[0].message.content.strip() else: # huggingface response = client.chat_completion( messages=messages, max_tokens=10000, temperature=temperature, frequency_penalty=1.4, top_p=0.9 ) return response.choices[0].message.content.strip() except Exception as e: logger.error(f"Error in LLM summarization: {e}") return "Error: Unable to generate a summary. Please try again." def search_and_scrape( query: str, chat_history: str, ai_model: AIModel, num_results: int = 10, max_chars: int = 1500, time_range: str = "", language: str = "en", category: str = "general", engines: List[str] = [], safesearch: int = 2, method: str = "GET", llm_temperature: float = 0.2, timeout: int = 5, model: str = "huggingface", use_pydf2: bool = True ): try: # Step 1: Rephrase the Query rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature) logger.info(f"Rephrased Query: {rephrased_query}") if not rephrased_query or rephrased_query.lower() == "not_needed": logger.info("No need to perform search based on the rephrased query.") return "No search needed for the provided input." # Step 2: Perform search # Search query parameters params = { 'q': rephrased_query, 'format': 'json', 'time_range': time_range, 'language': language, 'category': category, 'engines': ','.join(engines), 'safesearch': safesearch } # Remove empty parameters params = {k: v for k, v in params.items() if v != ""} # If no engines are specified, set default engines if 'engines' not in params: params['engines'] = 'google' # Default to 'google' or any preferred engine logger.info("No engines specified. Defaulting to 'google'.") # Headers for SearXNG request headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Accept-Language': 'en-US,en;q=0.5', 'Origin': 'https://shreyas094-searxng-local.hf.space', 'Referer': 'https://shreyas094-searxng-local.hf.space/', 'DNT': '1', 'Connection': 'keep-alive', 'Sec-Fetch-Dest': 'empty', 'Sec-Fetch-Mode': 'cors', 'Sec-Fetch-Site': 'same-origin', } scraped_content = [] page = 1 while len(scraped_content) < num_results: # Update params with current page params['pageno'] = page # Send request to SearXNG logger.info(f"Sending request to SearXNG for query: {rephrased_query} (Page {page})") session = requests_retry_session() try: if method.upper() == "GET": response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where()) else: # POST response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where()) response.raise_for_status() except requests.exceptions.RequestException as e: logger.error(f"Error during SearXNG request: {e}") return f"An error occurred during the search request: {e}" search_results = response.json() logger.debug(f"SearXNG Response: {search_results}") results = search_results.get('results', []) if not results: logger.warning(f"No more results returned from SearXNG on page {page}.") break for result in results: if len(scraped_content) >= num_results: break url = result.get('url', '') title = result.get('title', 'No title') if not is_valid_url(url): logger.warning(f"Invalid URL: {url}") continue try: logger.info(f"Processing content from: {url}") content = scrape_full_content(url, max_chars, timeout, use_pydf2) if content is None: # This means it's a PDF and use_pydf2 is False continue if not content: logger.warning(f"Failed to scrape content from {url}") continue scraped_content.append({ "title": title, "url": url, "content": content, "scraper": "pdf" if url.lower().endswith('.pdf') else "newspaper" }) logger.info(f"Successfully scraped content from {url}. Total scraped: {len(scraped_content)}") except requests.exceptions.RequestException as e: logger.error(f"Error scraping {url}: {e}") except Exception as e: logger.error(f"Unexpected error while scraping {url}: {e}") page += 1 if not scraped_content: logger.warning("No content scraped from search results.") return "No content could be scraped from the search results." logger.info(f"Successfully scraped {len(scraped_content)} documents.") # Step 4: Assess relevance, summarize, and check for uniqueness relevant_documents = [] unique_summaries = [] for doc in scraped_content: assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature) relevance, summary = assessment.split('\n', 1) if relevance.strip().lower() == "relevant: yes": summary_text = summary.replace("Summary: ", "").strip() if is_content_unique(summary_text, unique_summaries): relevant_documents.append({ "title": doc['title'], "url": doc['url'], "summary": summary_text, "scraper": doc['scraper'] }) unique_summaries.append(summary_text) else: logger.info(f"Skipping similar content: {doc['title']}") if not relevant_documents: logger.warning("No relevant and unique documents found.") return "No relevant and unique news found for the given query." # Step 5: Rerank documents based on similarity to query reranked_docs = rerank_documents(rephrased_query, relevant_documents, similarity_threshold=0.95, max_results=num_results) if not reranked_docs: logger.warning("No documents remained after reranking.") return "No relevant news found after filtering and ranking." logger.info(f"Reranked and filtered to top {len(reranked_docs)} unique, related documents.") # Step 5: Scrape full content for top documents (up to num_results) for doc in reranked_docs[:num_results]: full_content = scrape_full_content(doc['url'], max_chars) doc['full_content'] = full_content # Prepare JSON for LLM llm_input = { "query": query, "documents": [ { "title": doc['title'], "url": doc['url'], "summary": doc['summary'], "full_content": doc['full_content'] } for doc in reranked_docs[:num_results] ] } # Step 6: LLM Summarization llm_summary = llm_summarize(json.dumps(llm_input), model, temperature=llm_temperature) return llm_summary except Exception as e: logger.error(f"Unexpected error in search_and_scrape: {e}") return f"An unexpected error occurred during the search and scrape process: {e}" # Helper function to get the appropriate client for each model def get_client_for_model(model: str) -> Any: if model == "huggingface": return InferenceClient("mistralai/Mistral-Small-Instruct-2409", token=HF_TOKEN) elif model == "groq": return Groq(api_key=GROQ_API_KEY) elif model == "mistral": return Mistral(api_key=MISTRAL_API_KEY) elif CUSTOM_LLM and (model in fetch_custom_models() or model == CUSTOM_LLM_DEFAULT_MODEL): return None # CustomModel doesn't need a client else: raise ValueError(f"Unsupported model: {model}") def chat_function(message: str, history: List[Tuple[str, str]], only_web_search: bool, num_results: int, max_chars: int, time_range: str, language: str, category: str, engines: List[str], safesearch: int, method: str, llm_temperature: float, model: str, use_pydf2: bool): chat_history = "\n".join([f"{role}: {msg}" for role, msg in history]) # Create the appropriate AI model ai_model = AIModelFactory.create_model(model, get_client_for_model(model)) if only_web_search: query_type = "web_search" else: query_type = determine_query_type(message, chat_history, ai_model) if query_type == "knowledge_base": response = generate_ai_response(message, chat_history, ai_model, llm_temperature) else: # web_search gr.Info("Initiating Web Search") yield "Request you to sit back and relax until I scrape the web for up-to-date information" response = search_and_scrape( query=message, chat_history=chat_history, ai_model=ai_model, num_results=num_results, max_chars=max_chars, time_range=time_range, language=language, category=category, engines=engines, safesearch=safesearch, method=method, llm_temperature=llm_temperature, model=model, use_pydf2=use_pydf2 ) yield response iface = gr.ChatInterface( chat_function, title="Web Scraper for News with Sentinel AI", description="Ask Sentinel any question. It will search the web for recent information or use its knowledge base as appropriate.", theme=gr.Theme.from_hub("allenai/gradio-theme"), additional_inputs=[ gr.Checkbox(label="Only do web search", value=True), # Add this line gr.Slider(5, 20, value=3, step=1, label="Number of initial results"), gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"), gr.Dropdown(["", "day", "week", "month", "year"], value="", label="Time Range"), gr.Dropdown(["", "all", "en", "fr", "de", "es", "it", "nl", "pt", "pl", "ru", "zh"], value="", label="Language"), gr.Dropdown(["", "general", "news", "images", "videos", "music", "files", "it", "science", "social media"], value="general", label="Category"), gr.Dropdown( ["google", "bing", "duckduckgo", "baidu", "yahoo", "qwant", "startpage"], multiselect=True, value=["google", "duckduckgo", "bing", "qwant"], label="Engines" ), gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"), gr.Radio(["GET", "POST"], value="GET", label="HTTP Method"), gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"), gr.Dropdown(all_models, value=default_model, label="LLM Model"), gr.Checkbox(label="Use PyPDF2 for PDF scraping", value=True), ], additional_inputs_accordion=gr.Accordion("⚙️ Advanced Parameters", open=True), retry_btn="Retry", undo_btn="Undo", clear_btn="Clear", chatbot=gr.Chatbot( show_copy_button=True, likeable=True, layout="bubble", height=500, ) ) if __name__ == "__main__": logger.info("Starting the SearXNG Scraper for News using ChatInterface with Advanced Parameters") iface.launch(share=True)