import requests import gradio as gr from bs4 import BeautifulSoup import logging from urllib.parse import urlparse from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry from trafilatura import fetch_url, extract from trafilatura import extract from requests.exceptions import Timeout from trafilatura.settings import use_config from urllib.request import urlopen, Request import json from huggingface_hub import InferenceClient import random import time from sentence_transformers import SentenceTransformer, util import torch from datetime import datetime import os from dotenv import load_dotenv import certifi import requests import scrapy from scrapy.crawler import CrawlerProcess from scrapy import signals from scrapy.signalmanager import dispatcher from scrapy.utils.log import configure_logging from newspaper import Article # Load environment variables from a .env file load_dotenv() # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # SearXNG instance details SEARXNG_URL = 'https://shreyas094-searxng-local.hf.space/search' SEARXNG_KEY = 'f9f07f93b37b8483aadb5ba717f556f3a4ac507b281b4ca01e6c6288aa3e3ae5' # Use the environment variable HF_TOKEN = os.getenv("HF_TOKEN") client = InferenceClient( "mistralai/Mistral-Nemo-Instruct-2407", token=HF_TOKEN, ) # Initialize the similarity model similarity_model = SentenceTransformer('all-MiniLM-L6-v2') # Set up a session with retry mechanism def requests_retry_session( retries=0, backoff_factor=0.1, status_forcelist=(500, 502, 504), session=None, ): session = session or requests.Session() retry = Retry( total=retries, read=retries, connect=retries, backoff_factor=backoff_factor, status_forcelist=status_forcelist, ) adapter = HTTPAdapter(max_retries=retry) session.mount('http://', adapter) session.mount('https://', adapter) return session def is_valid_url(url): try: result = urlparse(url) return all([result.scheme, result.netloc]) except ValueError: return False class NewsSpider(scrapy.Spider): name = 'news_spider' def __init__(self, url=None, *args, **kwargs): super(NewsSpider, self).__init__(*args, **kwargs) self.start_urls = [url] if url else [] def parse(self, response): content = ' '.join(response.css('p::text').getall()) self.logger.info(f"Scraped content length: {len(content)}") return {'content': content} def scrape_with_scrapy(url, timeout=30): logger.info(f"Starting to scrape with Scrapy: {url}") configure_logging(install_root_handler=False) logging.getLogger('scrapy').setLevel(logging.WARNING) results = [] def spider_results(signal, sender, item, response, spider): results.append(item) process = CrawlerProcess(settings={ 'LOG_ENABLED': True, 'LOG_LEVEL': 'WARNING', 'DOWNLOAD_TIMEOUT': timeout }) dispatcher.connect(spider_results, signal=signals.item_scraped) process.crawl(NewsSpider, url=url) process.start() # Get the content from results if results: return results[0]['content'] return '' def scrape_with_newspaper(url): logger.info(f"Starting to scrape with Newspaper3k: {url}") article = Article(url) article.download() article.parse() return article.text def scrape_with_bs4(url, session, max_chars=None): try: response = session.get(url, timeout=5) response.raise_for_status() soup = BeautifulSoup(response.content, 'html.parser') main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content') if main_content: content = main_content.get_text(strip=True, separator='\n') else: content = soup.get_text(strip=True, separator='\n') return content[:max_chars] if max_chars else content except Exception as e: logger.error(f"Error scraping {url} with BeautifulSoup: {e}") return "" def scrape_with_trafilatura(url, max_chars=None, timeout=5, use_beautifulsoup=False): try: response = requests.get(url, timeout=timeout) response.raise_for_status() downloaded = response.text content = "" if use_beautifulsoup: soup = BeautifulSoup(downloaded, "lxml") # Convert BeautifulSoup object to a string html_string = str(soup) # Use Trafilatura's extract function directly on the HTML string content = extract(html_string, include_comments=False, include_tables=True, no_fallback=False) # Fallback mechanism: if BeautifulSoup didn't yield results, try without it if not content and use_beautifulsoup: logger.info("BeautifulSoup method failed to extract content. Trying without BeautifulSoup.") content = extract(downloaded, include_comments=False, include_tables=True, no_fallback=False) # If still no content, use the URL directly if not content: content = extract(url, include_comments=False, include_tables=True, no_fallback=False) return (content or "")[:max_chars] if max_chars else (content or "") except requests.Timeout: logger.error(f"Timeout error while scraping {url} with Trafilatura") return "" except Exception as e: logger.error(f"Error scraping {url} with Trafilatura: {e}") return "" def rephrase_query(chat_history, query, temperature=0.2): system_prompt = """You are a highly intelligent conversational chatbot. Your task is to analyze the given context and new query, then decide whether to rephrase the query with or without incorporating the context. Follow these steps: 1. Determine if the new query is a continuation of the previous conversation or an entirely new topic. 2. If it's a continuation, rephrase the query by incorporating relevant information from the context to make it more specific and contextual. 3. If it's a new topic, rephrase the query to make it more appropriate for a web search, focusing on clarity and accuracy without using the previous context. 4. Provide ONLY the rephrased query without any additional explanation or reasoning.""" user_prompt = f""" Context: {chat_history} New query: {query} Rephrased query: """ messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ] try: logger.info(f"Sending rephrasing request to LLM with temperature {temperature}") response = client.chat_completion( messages=messages, max_tokens=150, temperature=temperature ) logger.info("Received rephrased query from LLM") rephrased_question = response.choices[0].message.content.strip() # Remove surrounding quotes if present if (rephrased_question.startswith('"') and rephrased_question.endswith('"')) or \ (rephrased_question.startswith("'") and rephrased_question.endswith("'")): rephrased_question = rephrased_question[1:-1].strip() logger.info(f"Rephrased Query (cleaned): {rephrased_question}") return rephrased_question except Exception as e: logger.error(f"Error rephrasing query with LLM: {e}") return query # Fallback to original query if rephrasing fails def rerank_documents(query, documents): try: # Step 1: Encode the query and document summaries query_embedding = similarity_model.encode(query, convert_to_tensor=True) doc_summaries = [doc['summary'] for doc in documents] if not doc_summaries: logger.warning("No document summaries to rerank.") return documents # Return original documents if there's nothing to rerank doc_embeddings = similarity_model.encode(doc_summaries, convert_to_tensor=True) # Step 2: Compute Cosine Similarity cosine_scores = util.cos_sim(query_embedding, doc_embeddings)[0] # Step 3: Compute Dot Product Similarity dot_product_scores = torch.matmul(query_embedding, doc_embeddings.T) # Ensure dot_product_scores is a 1-D tensor if dot_product_scores.dim() == 0: dot_product_scores = dot_product_scores.unsqueeze(0) # Combine documents, cosine scores, and dot product scores scored_documents = list(zip(documents, cosine_scores, dot_product_scores)) # Step 4: Sort documents by cosine similarity score scored_documents.sort(key=lambda x: x[1], reverse=True) # Step 5: Return only the top 5 documents reranked_docs = [doc[0] for doc in scored_documents[:5]] logger.info(f"Reranked to top {len(reranked_docs)} documents.") return reranked_docs except Exception as e: logger.error(f"Error during reranking documents: {e}") return documents[:5] # Fallback to first 5 documents if reranking fails def compute_similarity(text1, text2): # Encode the texts embedding1 = similarity_model.encode(text1, convert_to_tensor=True) embedding2 = similarity_model.encode(text2, convert_to_tensor=True) # Compute cosine similarity cosine_similarity = util.pytorch_cos_sim(embedding1, embedding2) return cosine_similarity.item() def is_content_unique(new_content, existing_contents, similarity_threshold=0.8): for existing_content in existing_contents: similarity = compute_similarity(new_content, existing_content) if similarity > similarity_threshold: return False return True def assess_relevance_and_summarize(llm_client, query, document, temperature=0.2): system_prompt = """You are a financial analyst AI assistant. Your task is to assess whether the given text is relevant to the user's query from a financial perspective and provide a brief summary if it is relevant.""" user_prompt = f""" Query: {query} Document Content: {document['content']} Instructions: 1. Assess if the document is relevant to the query from a financial analyst's perspective. 2. If relevant, summarize the main points in 1-2 sentences. 3. If not relevant, simply state "Not relevant". Your response should be in the following format: Relevant: [Yes/No] Summary: [Your 1-2 sentence summary if relevant, or "Not relevant" if not] Remember to focus on financial aspects and implications in your assessment and summary. """ messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ] try: response = llm_client.chat_completion( messages=messages, max_tokens=150, temperature=temperature, top_p=0.9 ) return response.choices[0].message.content.strip() except Exception as e: logger.error(f"Error assessing relevance and summarizing with LLM: {e}") return "Error: Unable to assess relevance and summarize" def scrape_full_content(url, scraper="bs4", max_chars=3000, timeout=5): try: logger.info(f"Scraping full content from: {url}") if scraper == "bs4": session = requests_retry_session() response = session.get(url, timeout=timeout) response.raise_for_status() soup = BeautifulSoup(response.content, 'html.parser') # Try to find the main content main_content = soup.find('main') or soup.find('article') or soup.find('div', class_='content') if main_content: content = main_content.get_text(strip=True, separator='\n') else: content = soup.get_text(strip=True, separator='\n') elif scraper == "trafilatura": content = scrape_with_trafilatura(url, max_chars, timeout, use_beautifulsoup=True) elif scraper == "scrapy": content = scrape_with_scrapy(url, timeout) elif scraper == "newspaper": content = scrape_with_newspaper(url) else: logger.error(f"Unknown scraper: {scraper}") return "" # Limit the content to max_chars return content[:max_chars] if content else "" except Timeout: logger.error(f"Timeout error while scraping full content from {url}") return "" except Exception as e: logger.error(f"Error scraping full content from {url}: {e}") return "" def llm_summarize(json_input, llm_client, temperature=0.2): system_prompt = """You are Sentinel, a world-class Financial analysis AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them.""" user_prompt = f""" Please provide a comprehensive summary based on the following JSON input: {json_input} Instructions: 1. Analyze the query and the provided documents. 2. Write a detailed, long, and complete research document that is informative and relevant to the user's query. 3. Use an unbiased and professional tone in your response. 4. Do not repeat text verbatim from the input. 5. Provide the answer in the response itself. 6. You can use markdown to format your response. 7. Use bullet points to list information where appropriate. 8. Cite the answer using [number] notation along with the appropriate source URL embedded in the notation. 9. Place these citations at the end of the relevant sentences. 10. You can cite the same sentence multiple times if it's relevant to different parts of your answer. Your response should be detailed, informative, accurate, and directly relevant to the user's query.""" messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ] try: response = llm_client.chat_completion( messages=messages, max_tokens=10000, temperature=temperature, frequency_penalty=1.1, top_p=0.9, stream=True ) return response.choices[0].message.content.strip() except Exception as e: logger.error(f"Error in LLM summarization: {e}") return "Error: Unable to generate a summary. Please try again." def search_and_scrape(query, chat_history, num_results=5, scraper="bs4", max_chars=3000, time_range="", language="all", category="", engines=[], safesearch=2, method="GET", llm_temperature=0.2, timeout=5): try: # Step 1: Rephrase the Query rephrased_query = rephrase_query(chat_history, query, temperature=llm_temperature) logger.info(f"Rephrased Query: {rephrased_query}") if not rephrased_query or rephrased_query.lower() == "not_needed": logger.info("No need to perform search based on the rephrased query.") return "No search needed for the provided input." # Search query parameters params = { 'q': rephrased_query, 'format': 'json', 'time_range': time_range, 'language': language, 'category': category, 'engines': ','.join(engines), 'safesearch': safesearch } # Remove empty parameters params = {k: v for k, v in params.items() if v != ""} # If no engines are specified, set default engines if 'engines' not in params: params['engines'] = 'google' # Default to 'google' or any preferred engine logger.info("No engines specified. Defaulting to 'google'.") # Headers for SearXNG request headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Accept-Language': 'en-US,en;q=0.5', 'Origin': 'https://shreyas094-searxng-local.hf.space', 'Referer': 'https://shreyas094-searxng-local.hf.space/', 'DNT': '1', 'Connection': 'keep-alive', 'Sec-Fetch-Dest': 'empty', 'Sec-Fetch-Mode': 'cors', 'Sec-Fetch-Site': 'same-origin', } scraped_content = [] page = 1 while len(scraped_content) < num_results: # Update params with current page params['pageno'] = page # Send request to SearXNG logger.info(f"Sending request to SearXNG for query: {rephrased_query} (Page {page})") session = requests_retry_session() try: if method.upper() == "GET": response = session.get(SEARXNG_URL, params=params, headers=headers, timeout=10, verify=certifi.where()) else: # POST response = session.post(SEARXNG_URL, data=params, headers=headers, timeout=10, verify=certifi.where()) response.raise_for_status() except requests.exceptions.RequestException as e: logger.error(f"Error during SearXNG request: {e}") return f"An error occurred during the search request: {e}" search_results = response.json() logger.debug(f"SearXNG Response: {search_results}") results = search_results.get('results', []) if not results: logger.warning(f"No more results returned from SearXNG on page {page}.") break for result in results: if len(scraped_content) >= num_results: break url = result.get('url', '') title = result.get('title', 'No title') if not is_valid_url(url): logger.warning(f"Invalid URL: {url}") continue try: logger.info(f"Scraping content from: {url}") # MODIFY: Remove the user agent loop and use a single scraping method content = scrape_full_content(url, scraper, max_chars, timeout) if not content: logger.warning(f"Failed to scrape content from {url}") continue scraped_content.append({ "title": title, "url": url, "content": content, "scraper": scraper }) logger.info(f"Successfully scraped content from {url}. Total scraped: {len(scraped_content)}") except requests.exceptions.RequestException as e: logger.error(f"Error scraping {url}: {e}") except Exception as e: logger.error(f"Unexpected error while scraping {url}: {e}") page += 1 if not scraped_content: logger.warning("No content scraped from search results.") return "No content could be scraped from the search results." logger.info(f"Successfully scraped {len(scraped_content)} documents.") # Step 3: Assess relevance, summarize, and check for uniqueness relevant_documents = [] unique_summaries = [] for doc in scraped_content: assessment = assess_relevance_and_summarize(client, rephrased_query, doc, temperature=llm_temperature) relevance, summary = assessment.split('\n', 1) if relevance.strip().lower() == "relevant: yes": summary_text = summary.replace("Summary: ", "").strip() if is_content_unique(summary_text, unique_summaries): relevant_documents.append({ "title": doc['title'], "url": doc['url'], "summary": summary_text, "scraper": doc['scraper'] }) unique_summaries.append(summary_text) else: logger.info(f"Skipping similar content: {doc['title']}") if not relevant_documents: logger.warning("No relevant and unique documents found.") return "No relevant and unique financial news found for the given query." logger.debug(f"Assessment result: {assessment}") # Step 4: Rerank documents based on similarity to query reranked_docs = rerank_documents(rephrased_query, relevant_documents) if not reranked_docs: logger.warning("No documents remained after reranking.") return "No relevant financial news found after filtering and ranking." logger.info(f"Reranked and filtered to top {len(reranked_docs)} unique, finance-related documents.") # Step 5: Scrape full content for top documents (up to num_results) for doc in reranked_docs[:num_results]: full_content = scrape_full_content(doc['url'], scraper, max_chars) doc['full_content'] = full_content # Prepare JSON for LLM llm_input = { "query": query, "documents": [ { "title": doc['title'], "url": doc['url'], "summary": doc['summary'], "full_content": doc['full_content'] } for doc in reranked_docs[:num_results] ] } # Step 6: LLM Summarization llm_summary = llm_summarize(json.dumps(llm_input), client, temperature=llm_temperature) return llm_summary except Exception as e: logger.error(f"Unexpected error in search_and_scrape: {e}") return f"An unexpected error occurred during the search and scrape process: {e}" def chat_function(message, history, num_results, scraper, max_chars, time_range, language, category, engines, safesearch, method, llm_temperature): chat_history = "\n".join([f"{role}: {msg}" for role, msg in history]) response = search_and_scrape( query=message, chat_history=chat_history, num_results=num_results, scraper=scraper, max_chars=max_chars, time_range=time_range, language=language, category=category, engines=engines, safesearch=safesearch, method=method, llm_temperature=llm_temperature ) yield response iface = gr.ChatInterface( chat_function, title="SearXNG Scraper for Financial News", description="Enter your query, and I'll search the web for the most recent and relevant financial news, scrape content, and provide summarized results.", additional_inputs=[ gr.Slider(5, 20, value=10, step=1, label="Number of initial results"), gr.Dropdown(["bs4", "trafilatura", "scrapy", "newspaper"], value="bs4", label="Scraping Method"), gr.Slider(500, 10000, value=1500, step=100, label="Max characters to retrieve"), gr.Dropdown(["", "day", "week", "month", "year"], value="year", label="Time Range"), gr.Dropdown(["all", "en", "fr", "de", "es", "it", "nl", "pt", "pl", "ru", "zh"], value="en", label="Language"), gr.Dropdown(["", "general", "news", "images", "videos", "music", "files", "it", "science", "social media"], value="", label="Category"), gr.Dropdown( ["google", "bing", "duckduckgo", "baidu", "yahoo", "qwant", "startpage"], multiselect=True, value=["google", "duckduckgo"], label="Engines" ), gr.Slider(0, 2, value=2, step=1, label="Safe Search Level"), gr.Radio(["GET", "POST"], value="POST", label="HTTP Method"), gr.Slider(0, 1, value=0.2, step=0.1, label="LLM Temperature"), ], additional_inputs_accordion=gr.Accordion("⚙️ Advanced Parameters", open=True), retry_btn="Retry", undo_btn="Undo", clear_btn="Clear", chatbot=gr.Chatbot( show_copy_button=True, likeable=True, layout="bubble", height=400, ) ) if __name__ == "__main__": logger.info("Starting the SearXNG Scraper for Financial News using ChatInterface with Advanced Parameters") iface.launch(share=True)