Spaces:
Paused
Paused
import os | |
import json | |
import gradio as gr | |
import pandas as pd | |
import tempfile | |
from typing import List | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFaceHub | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_core.runnables import RunnableParallel, RunnablePassthrough | |
from langchain_core.documents import Document | |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") | |
def load_and_split_document(file: tempfile._TemporaryFileWrapper) -> List[Document]: | |
"""Loads and splits the document into chunks.""" | |
loader = PyPDFLoader(file.name) | |
pages = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len, | |
) | |
chunks = text_splitter.split_documents(pages) | |
return chunks | |
def get_embeddings(): | |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
def create_database(data: List[Document], embeddings): | |
db = FAISS.from_documents(data, embeddings) | |
db.save_local("faiss_database") | |
prompt = """ | |
Answer the question based only on the following context: | |
{context} | |
Question: {question} | |
Provide a concise and direct answer to the question: | |
""" | |
def get_model(): | |
return HuggingFaceHub( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
model_kwargs={"temperature": 0.5, "max_length": 512}, | |
huggingfacehub_api_token=huggingface_token | |
) | |
def generate_chunked_response(model, prompt, max_tokens=500, max_chunks=5): | |
full_response = "" | |
for i in range(max_chunks): | |
chunk = model(prompt + full_response, max_new_tokens=max_tokens) | |
full_response += chunk | |
if chunk.strip().endswith((".", "!", "?")): | |
break | |
return full_response.strip() | |
def response(database, model, question): | |
prompt_val = ChatPromptTemplate.from_template(prompt) | |
retriever = database.as_retriever() | |
context = retriever.get_relevant_documents(question) | |
context_str = "\n".join([doc.page_content for doc in context]) | |
formatted_prompt = prompt_val.format(context=context_str, question=question) | |
ans = generate_chunked_response(model, formatted_prompt) | |
return ans | |
def update_vectors(file): | |
if file is None: | |
return "Please upload a PDF file." | |
data = load_and_split_document(file) | |
embed = get_embeddings() | |
create_database(data, embed) | |
return f"Vector store updated successfully. Processed {len(data)} chunks." | |
def ask_question(question): | |
if not question: | |
return "Please enter a question." | |
embed = get_embeddings() | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
model = get_model() | |
return response(database, model, question) | |
def extract_db_to_excel(): | |
embed = get_embeddings() | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
documents = database.docstore._dict.values() | |
data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents] | |
df = pd.DataFrame(data) | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: | |
excel_path = tmp.name | |
df.to_excel(excel_path, index=False) | |
return excel_path | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Chat with your PDF documents") | |
with gr.Row(): | |
file_input = gr.File(label="Upload your PDF document", file_types=[".pdf"]) | |
update_button = gr.Button("Update Vector Store") | |
update_output = gr.Textbox(label="Update Status") | |
update_button.click(update_vectors, inputs=[file_input], outputs=update_output) | |
with gr.Row(): | |
question_input = gr.Textbox(label="Ask a question about your documents") | |
submit_button = gr.Button("Submit") | |
answer_output = gr.Textbox(label="Answer") | |
submit_button.click(ask_question, inputs=[question_input], outputs=answer_output) | |
extract_button = gr.Button("Extract Database to Excel") | |
excel_output = gr.File(label="Download Excel File") | |
extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output) | |
if __name__ == "__main__": | |
demo.launch() |