Spaces:
Paused
Paused
import fitz # PyMuPDF | |
import gradio as gr | |
import requests | |
from bs4 import BeautifulSoup | |
import urllib.parse | |
import random | |
import os | |
from dotenv import load_dotenv | |
import shutil | |
import tempfile | |
load_dotenv() # Load environment variables from .env file | |
# Now replace the hard-coded token with the environment variable | |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
def clear_cache(): | |
try: | |
# Clear Gradio cache | |
cache_dir = tempfile.gettempdir() | |
shutil.rmtree(os.path.join(cache_dir, "gradio"), ignore_errors=True) | |
# Clear any custom cache you might have | |
# For example, if you're caching PDF files or search results: | |
if os.path.exists("output_summary.pdf"): | |
os.remove("output_summary.pdf") | |
# Add any other cache clearing operations here | |
print("Cache cleared successfully.") | |
return "Cache cleared successfully." | |
except Exception as e: | |
print(f"Error clearing cache: {e}") | |
return f"Error clearing cache: {e}" | |
_useragent_list = [ | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", | |
] | |
# Function to extract visible text from HTML content of a webpage | |
def extract_text_from_webpage(html): | |
print("Extracting text from webpage...") | |
soup = BeautifulSoup(html, 'html.parser') | |
for script in soup(["script", "style"]): | |
script.extract() # Remove scripts and styles | |
text = soup.get_text() | |
lines = (line.strip() for line in text.splitlines()) | |
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
text = '\n'.join(chunk for chunk in chunks if chunk) | |
print(f"Extracted text length: {len(text)}") | |
return text | |
# Function to perform a Google search and retrieve results | |
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): | |
"""Performs a Google search and returns the results.""" | |
print(f"Searching for term: {term}") | |
escaped_term = urllib.parse.quote_plus(term) | |
start = 0 | |
all_results = [] | |
max_chars_per_page = 8000 # Limit the number of characters from each webpage to stay under the token limit | |
with requests.Session() as session: | |
while start < num_results: | |
print(f"Fetching search results starting from: {start}") | |
try: | |
# Choose a random user agent | |
user_agent = random.choice(_useragent_list) | |
headers = { | |
'User-Agent': user_agent | |
} | |
print(f"Using User-Agent: {headers['User-Agent']}") | |
resp = session.get( | |
url="https://www.google.com/search", | |
headers=headers, | |
params={ | |
"q": term, | |
"num": num_results - start, | |
"hl": lang, | |
"start": start, | |
"safe": safe, | |
}, | |
timeout=timeout, | |
verify=ssl_verify, | |
) | |
resp.raise_for_status() | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching search results: {e}") | |
break | |
soup = BeautifulSoup(resp.text, "html.parser") | |
result_block = soup.find_all("div", attrs={"class": "g"}) | |
if not result_block: | |
print("No more results found.") | |
break | |
for result in result_block: | |
link = result.find("a", href=True) | |
if link: | |
link = link["href"] | |
print(f"Found link: {link}") | |
try: | |
webpage = session.get(link, headers=headers, timeout=timeout) | |
webpage.raise_for_status() | |
visible_text = extract_text_from_webpage(webpage.text) | |
if len(visible_text) > max_chars_per_page: | |
visible_text = visible_text[:max_chars_per_page] + "..." | |
all_results.append({"link": link, "text": visible_text}) | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching or processing {link}: {e}") | |
all_results.append({"link": link, "text": None}) | |
else: | |
print("No link found in result.") | |
all_results.append({"link": None, "text": None}) | |
start += len(result_block) | |
print(f"Total results fetched: {len(all_results)}") | |
return all_results | |
# Function to format the prompt for the Hugging Face API | |
def format_prompt(query, search_results, instructions): | |
formatted_results = "" | |
for result in search_results: | |
link = result["link"] | |
text = result["text"] | |
if link: | |
formatted_results += f"URL: {link}\nContent: {text}\n{'-' * 80}\n" | |
else: | |
formatted_results += "No link found.\n" + '-' * 80 + '\n' | |
prompt = f"{instructions}User Query: {query}\n\nWeb Search Results:\n{formatted_results}\n\nAssistant:" | |
return prompt | |
# Function to generate text using Hugging Face API | |
def generate_text(input_text, temperature=0.7, repetition_penalty=1.0, top_p=0.9): | |
print("Generating text using Hugging Face API...") | |
endpoint = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3" | |
headers = { | |
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", # Use the environment variable | |
"Content-Type": "application/json" | |
} | |
data = { | |
"inputs": input_text, | |
"parameters": { | |
"max_new_tokens": 8000, # Adjust as needed | |
"temperature": temperature, | |
"repetition_penalty": repetition_penalty, | |
"top_p": top_p | |
} | |
} | |
try: | |
response = requests.post(endpoint, headers=headers, json=data) | |
response.raise_for_status() | |
# Check if response is JSON | |
try: | |
json_data = response.json() | |
except ValueError: | |
print("Response is not JSON.") | |
return None | |
# Extract generated text from response JSON | |
if isinstance(json_data, list): | |
# Handle list response (if applicable for your use case) | |
generated_text = json_data[0].get("generated_text") if json_data else None | |
elif isinstance(json_data, dict): | |
# Handle dictionary response | |
generated_text = json_data.get("generated_text") | |
else: | |
print("Unexpected response format.") | |
return None | |
if generated_text is not None: | |
print("Text generation complete using Hugging Face API.") | |
print(f"Generated text: {generated_text}") # Debugging line | |
return generated_text | |
else: | |
print("Generated text not found in response.") | |
return None | |
except requests.exceptions.RequestException as e: | |
print(f"Error generating text using Hugging Face API: {e}") | |
return None | |
# Function to read and extract text from a PDF | |
def read_pdf(file_obj): | |
with fitz.open(file_obj.name) as document: | |
text = "" | |
for page_num in range(document.page_count): | |
page = document.load_page(page_num) | |
text += page.get_text() | |
return text | |
# Function to format the prompt with instructions for text generation | |
def format_prompt_with_instructions(text, instructions): | |
prompt = f"{instructions}{text}\n\nAssistant:" | |
return prompt | |
# Function to save text to a PDF | |
def save_text_to_pdf(text, output_path): | |
print(f"Saving text to PDF at {output_path}...") | |
doc = fitz.open() # Create a new PDF document | |
page = doc.new_page() # Create a new page | |
# Set the page margins | |
margin = 50 # 50 points margin | |
page_width = page.rect.width | |
page_height = page.rect.height | |
text_width = page_width - 2 * margin | |
text_height = page_height - 2 * margin | |
# Define font size and line spacing | |
font_size = 9 | |
line_spacing = 1 * font_size | |
max_lines_per_page = int(text_height // line_spacing) | |
# Load a built-in font | |
font = "helv" | |
# Split the text into lines | |
lines = text.split("\n") | |
current_line = 0 | |
for line in lines: | |
if current_line >= max_lines_per_page: | |
page = doc.new_page() # Add a new page | |
current_line = 0 | |
rect = fitz.Rect(margin, margin + current_line * line_spacing, text_width, margin + (current_line + 1) * line_spacing) | |
page.insert_textbox(rect, line, fontsize=font_size, fontname=font, align=fitz.TEXT_ALIGN_LEFT) | |
current_line += 1 | |
doc.save(output_path) | |
print(f"Text saved to PDF at {output_path}.") | |
# Function to handle user queries | |
def handle_query(query, is_read_pdf, instructions): | |
print("Handling user query...") | |
max_chars_per_chunk = 1000 # Adjust this value as needed to control chunk size | |
if is_read_pdf: | |
pdf_text = read_pdf(query) | |
text_chunks = [pdf_text[i:i+max_chars_per_chunk] for i in range(0, len(pdf_text), max_chars_per_chunk)] | |
else: | |
search_results = google_search(query) | |
text_chunks = [] | |
for result in search_results: | |
if result["text"]: | |
text_chunks.extend([result["text"][i:i+max_chars_per_chunk] for i in range(0, len(result["text"]), max_chars_per_chunk)]) | |
summaries = [] | |
for chunk in text_chunks: | |
formatted_prompt = format_prompt_with_instructions(chunk, instructions) | |
summary = generate_text(formatted_prompt) | |
if summary: | |
summaries.append(summary) | |
combined_summary = " ".join(summaries) | |
save_text_to_pdf(combined_summary, "output_summary.pdf") | |
return combined_summary | |
def run_app(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# Web and PDF Summarizer") | |
query = gr.Textbox(label="Enter your query or upload a PDF", placeholder="Enter query here") | |
is_read_pdf = gr.Checkbox(label="Read PDF", value=False) | |
instructions = gr.Textbox(label="Enter instructions", placeholder="Enter instructions here") | |
output = gr.Textbox(label="Summary") | |
clear_cache_btn = gr.Button("Clear Cache") | |
clear_cache_btn.click(fn=clear_cache, outputs=output) | |
generate_btn = gr.Button("Generate Summary") | |
generate_btn.click(fn=handle_query, inputs=[query, is_read_pdf, instructions], outputs=output) | |
demo.launch() | |
run_app() |