Spaces:
Paused
Paused
import os | |
import json | |
import gradio as gr | |
import pandas as pd | |
from tempfile import NamedTemporaryFile | |
from typing import List | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_community.llms import HuggingFaceHub | |
from langchain_core.runnables import RunnableParallel, RunnablePassthrough | |
from langchain_core.documents import Document | |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") | |
# Memory database to store question-answer pairs | |
memory_database = {} | |
def load_and_split_document_basic(file): | |
"""Loads and splits the document into pages.""" | |
loader = PyPDFLoader(file.name) | |
data = loader.load_and_split() | |
return data | |
def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]: | |
"""Loads and splits the document into chunks.""" | |
loader = PyPDFLoader(file.name) | |
pages = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len, | |
) | |
chunks = text_splitter.split_documents(pages) | |
return chunks | |
def get_embeddings(): | |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
def create_or_update_database(data, embeddings): | |
if os.path.exists("faiss_database"): | |
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True) | |
db.add_documents(data) | |
else: | |
db = FAISS.from_documents(data, embeddings) | |
db.save_local("faiss_database") | |
def clear_cache(): | |
if os.path.exists("faiss_database"): | |
os.remove("faiss_database") | |
return "Cache cleared successfully." | |
else: | |
return "No cache to clear." | |
prompt = """ | |
Answer the question based only on the following context: | |
{context} | |
Question: {question} | |
Provide a concise and direct answer to the question: | |
""" | |
def get_model(temperature, top_p, repetition_penalty): | |
return HuggingFaceHub( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
model_kwargs={ | |
"temperature": temperature, | |
"top_p": top_p, | |
"repetition_penalty": repetition_penalty, | |
"max_length": 512 | |
}, | |
huggingfacehub_api_token=huggingface_token | |
) | |
def generate_chunked_response(model, prompt, max_tokens=500, max_chunks=5): | |
full_response = "" | |
for i in range(max_chunks): | |
chunk = model(prompt + full_response, max_new_tokens=max_tokens) | |
chunk = chunk.strip() | |
# Check for final sentence endings | |
if chunk.endswith((".", "!", "?")): | |
full_response += chunk | |
break | |
full_response += chunk | |
return full_response.strip() | |
def response(database, model, question): | |
prompt_val = ChatPromptTemplate.from_template(prompt) | |
retriever = database.as_retriever() | |
context = retriever.get_relevant_documents(question) | |
context_str = "\n".join([doc.page_content for doc in context]) | |
formatted_prompt = prompt_val.format(context=context_str, question=question) | |
ans = generate_chunked_response(model, formatted_prompt) | |
return ans # Only return the final answer | |
def update_vectors(files, use_recursive_splitter): | |
if not files: | |
return "Please upload at least one PDF file." | |
embed = get_embeddings() | |
total_chunks = 0 | |
for file in files: | |
if use_recursive_splitter: | |
data = load_and_split_document_recursive(file) | |
else: | |
data = load_and_split_document_basic(file) | |
create_or_update_database(data, embed) | |
total_chunks += len(data) | |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files." | |
def ask_question(question, temperature, top_p, repetition_penalty): | |
if not question: | |
return "Please enter a question." | |
# Check if the question exists in the memory database | |
if question in memory_database: | |
return memory_database[question] | |
embed = get_embeddings() | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
model = get_model(temperature, top_p, repetition_penalty) | |
# Generate response from document database | |
answer = response(database, model, question) | |
# Store the question and answer in the memory database | |
memory_database[question] = answer | |
return answer | |
def extract_db_to_excel(): | |
embed = get_embeddings() | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
documents = database.docstore._dict.values() | |
data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents] | |
df = pd.DataFrame(data) | |
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: | |
excel_path = tmp.name | |
df.to_excel(excel_path, index=False) | |
return excel_path | |
def export_memory_db_to_excel(): | |
data = [{"question": question, "answer": answer} for question, answer in memory_database.items()] | |
df = pd.DataFrame(data) | |
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp: | |
excel_path = tmp.name | |
df.to_excel(excel_path, index=False) | |
return excel_path | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Chat with your PDF documents") | |
with gr.Row(): | |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) | |
update_button = gr.Button("Update Vector Store") | |
use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False) | |
update_output = gr.Textbox(label="Update Status") | |
update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output) | |
with gr.Row(): | |
question_input = gr.Textbox(label="Ask a question about your documents") | |
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1) | |
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1) | |
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1) | |
submit_button = gr.Button("Submit") | |
answer_output = gr.Textbox(label="Answer") | |
submit_button.click(ask_question, inputs=[question_input, temperature_slider, top_p_slider, repetition_penalty_slider], outputs=answer_output) | |
extract_button = gr.Button("Extract Database to Excel") | |
excel_output = gr.File(label="Download Excel File") | |
extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output) | |
export_memory_button = gr.Button("Export Memory Database to Excel") | |
memory_excel_output = gr.File(label="Download Memory Excel File") | |
export_memory_button.click(export_memory_db_to_excel, inputs=[], outputs=memory_excel_output) | |
clear_button = gr.Button("Clear Cache") | |
clear_output = gr.Textbox(label="Cache Status") | |
clear_button.click(clear_cache, inputs=[], outputs=clear_output) | |
if __name__ == "__main__": | |
demo.launch() | |