Spaces:
Paused
Paused
import random | |
import requests | |
from bs4 import BeautifulSoup | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
!huggingface-cli login | |
# List of user agents | |
_useragent_list = [ | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", | |
] | |
# Function to extract visible text from HTML content of a webpage | |
def extract_text_from_webpage(html): | |
print("Extracting text from webpage...") | |
soup = BeautifulSoup(html, 'html.parser') | |
for script in soup(["script", "style"]): | |
script.extract() # Remove scripts and styles | |
text = soup.get_text() | |
lines = (line.strip() for line in text.splitlines()) | |
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
text = '\n'.join(chunk for chunk in chunks if chunk) | |
print(f"Extracted text length: {len(text)}") | |
return text | |
# Function to perform a Google search and retrieve results | |
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): | |
"""Performs a Google search and returns the results.""" | |
print(f"Searching for term: {term}") | |
escaped_term = requests.utils.quote(term) | |
start = 0 | |
all_results = [] | |
max_chars_per_page = 8000 # Limit the number of characters from each webpage to stay under the token limit | |
with requests.Session() as session: | |
while start < num_results: | |
print(f"Fetching search results starting from: {start}") | |
try: | |
# Choose a random user agent | |
user_agent = random.choice(_useragent_list) | |
headers = { | |
'User-Agent': user_agent | |
} | |
print(f"Using User-Agent: {headers['User-Agent']}") | |
resp = session.get( | |
url="https://www.google.com/search", | |
headers=headers, | |
params={ | |
"q": term, | |
"num": num_results - start, | |
"hl": lang, | |
"start": start, | |
"safe": safe, | |
}, | |
timeout=timeout, | |
verify=ssl_verify, | |
) | |
resp.raise_for_status() | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching search results: {e}") | |
break | |
soup = BeautifulSoup(resp.text, "html.parser") | |
result_block = soup.find_all("div", attrs={"class": "g"}) | |
if not result_block: | |
print("No more results found.") | |
break | |
for result in result_block: | |
link = result.find("a", href=True) | |
if link: | |
link = link["href"] | |
print(f"Found link: {link}") | |
try: | |
webpage = session.get(link, headers=headers, timeout=timeout) | |
webpage.raise_for_status() | |
visible_text = extract_text_from_webpage(webpage.text) | |
if len(visible_text) > max_chars_per_page: | |
visible_text = visible_text[:max_chars_per_page] + "..." | |
all_results.append({"link": link, "text": visible_text}) | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching or processing {link}: {e}") | |
all_results.append({"link": link, "text": None}) | |
else: | |
print("No link found in result.") | |
all_results.append({"link": None, "text": None}) | |
start += len(result_block) | |
print(f"Total results fetched: {len(all_results)}") | |
return all_results | |
# Load the Mixtral-8x7B-Instruct model and tokenizer | |
model_name = 'mistralai/Mistral-7B-Instruct-v0.3' | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Check if a GPU is available and if not, fall back to CPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Example usage | |
search_term = "How did Tesla perform in Q1 2024" | |
search_results = google_search(search_term, num_results=3) | |
# Combine text from search results to create a prompt | |
combined_text = "\n\n".join(result['text'] for result in search_results if result['text']) | |
# Tokenize the input text | |
inputs = tokenizer(combined_text, return_tensors="pt") | |
# Generate a response | |
outputs = model.generate(**inputs, max_length=150, temperature=0.7, top_p=0.9, top_k=50) | |
# Decode the generated tokens to a readable string | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Print the response | |
print(response) |