SearchGPT / app.py
Shreyas094's picture
Update app.py
c8302a1 verified
raw
history blame
19.7 kB
import os
import json
import re
import gradio as gr
import pandas as pd
import requests
import random
import urllib.parse
import spacy
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from typing import List, Dict
from tempfile import NamedTemporaryFile
from bs4 import BeautifulSoup
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceHub
from langchain_core.documents import Document
from sentence_transformers import SentenceTransformer
import nest_asyncio
from llama_parse import LlamaParse
nest_asyncio.apply()
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
# Load SentenceTransformer model
sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
def load_spacy_model():
try:
# Try to load the model
return spacy.load("en_core_web_sm")
except OSError:
# If loading fails, download the model
os.system("python -m spacy download en_core_web_sm")
# Try loading again
return spacy.load("en_core_web_sm")
# Load spaCy model
nlp = load_spacy_model()
class EnhancedContextDrivenChatbot:
def __init__(self, history_size=10):
self.history = []
self.history_size = history_size
self.entity_tracker = {}
def add_to_history(self, text):
self.history.append(text)
if len(self.history) > self.history_size:
self.history.pop(0)
# Update entity tracker
doc = nlp(text)
for ent in doc.ents:
if ent.label_ not in self.entity_tracker:
self.entity_tracker[ent.label_] = set()
self.entity_tracker[ent.label_].add(ent.text)
def get_context(self):
return " ".join(self.history)
def is_follow_up_question(self, question):
doc = nlp(question.lower())
follow_up_indicators = set(['it', 'this', 'that', 'these', 'those', 'he', 'she', 'they', 'them'])
return any(token.text in follow_up_indicators for token in doc)
def extract_topics(self, text):
doc = nlp(text)
return [chunk.text for chunk in doc.noun_chunks]
def get_most_relevant_context(self, question):
if not self.history:
return question
# Create a combined context from history
combined_context = self.get_context()
# Get embeddings
context_embedding = sentence_model.encode([combined_context])[0]
question_embedding = sentence_model.encode([question])[0]
# Calculate similarity
similarity = cosine_similarity([context_embedding], [question_embedding])[0][0]
# If similarity is low, it might be a new topic
if similarity < 0.3: # This threshold can be adjusted
return question
# Otherwise, prepend the context
return f"{combined_context} {question}"
def process_question(self, question):
contextualized_question = self.get_most_relevant_context(question)
# Extract topics from the question
topics = self.extract_topics(question)
# Check if it's a follow-up question
if self.is_follow_up_question(question):
# If it's a follow-up, make sure to include previous context
contextualized_question = f"{self.get_context()} {question}"
# Add the new question to history
self.add_to_history(question)
return contextualized_question, topics, self.entity_tracker
# Initialize LlamaParse
llama_parser = LlamaParse(
api_key=llama_cloud_api_key,
result_type="markdown",
num_workers=4,
verbose=True,
language="en",
)
def load_document(file: NamedTemporaryFile, parser: str = "pypdf") -> List[Document]:
"""Loads and splits the document into pages."""
if parser == "pypdf":
loader = PyPDFLoader(file.name)
return loader.load_and_split()
elif parser == "llamaparse":
documents = llama_parser.load_data(file.name)
# Convert LlamaParse output to langchain Document format
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
else:
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
def update_vectors(files, parser):
if not files:
return "Please upload at least one PDF file."
embed = get_embeddings()
total_chunks = 0
all_data = []
for file in files:
data = load_document(file, parser)
all_data.extend(data)
total_chunks += len(data)
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
database.add_documents(all_data)
else:
database = FAISS.from_documents(all_data, embed)
database.save_local("faiss_database")
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def clear_cache():
if os.path.exists("faiss_database"):
os.remove("faiss_database")
return "Cache cleared successfully."
else:
return "No cache to clear."
def get_model(temperature, top_p, repetition_penalty):
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
model_kwargs={
"temperature": temperature,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"max_length": 1000
},
huggingfacehub_api_token=huggingface_token
)
def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5):
full_response = ""
for i in range(max_chunks):
try:
chunk = model(prompt + full_response, max_new_tokens=max_tokens)
chunk = chunk.strip()
if chunk.endswith((".", "!", "?")):
full_response += chunk
break
full_response += chunk
except Exception as e:
print(f"Error in generate_chunked_response: {e}")
break
return full_response.strip()
def extract_text_from_webpage(html):
soup = BeautifulSoup(html, 'html.parser')
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = '\n'.join(chunk for chunk in chunks if chunk)
return text
_useragent_list = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
]
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None):
escaped_term = urllib.parse.quote_plus(term)
start = 0
all_results = []
max_chars_per_page = 8000
print(f"Starting Google search for term: '{term}'")
with requests.Session() as session:
while start < num_results:
try:
user_agent = random.choice(_useragent_list)
headers = {
'User-Agent': user_agent
}
resp = session.get(
url="https://www.google.com/search",
headers=headers,
params={
"q": term,
"num": num_results - start,
"hl": lang,
"start": start,
"safe": safe,
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status()
print(f"Successfully retrieved search results page (start={start})")
except requests.exceptions.RequestException as e:
print(f"Error retrieving search results: {e}")
break
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
if not result_block:
print("No results found on this page")
break
print(f"Found {len(result_block)} results on this page")
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
print(f"Processing link: {link}")
try:
webpage = session.get(link, headers=headers, timeout=timeout)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page] + "..."
all_results.append({"link": link, "text": visible_text})
print(f"Successfully extracted text from {link}")
except requests.exceptions.RequestException as e:
print(f"Error retrieving webpage content: {e}")
all_results.append({"link": link, "text": None})
else:
print("No link found for this result")
all_results.append({"link": None, "text": None})
start += len(result_block)
print(f"Search completed. Total results: {len(all_results)}")
if not all_results:
print("No search results found. Returning a default message.")
return [{"link": None, "text": "No information found in the web search results."}]
return all_results
def ask_question(question, temperature, top_p, repetition_penalty, web_search, chatbot):
if not question:
return "Please enter a question."
model = get_model(temperature, top_p, repetition_penalty)
embed = get_embeddings()
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
else:
database = None
max_attempts = 3
context_reduction_factor = 0.7
contextualized_question, topics, entity_tracker = chatbot.process_question(question)
# Convert sets to lists in entity_tracker
serializable_entity_tracker = {k: list(v) for k, v in entity_tracker.items()}
if web_search:
search_results = google_search(contextualized_question)
all_answers = []
for attempt in range(max_attempts):
try:
web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]]
if database is None:
database = FAISS.from_documents(web_docs, embed)
else:
database.add_documents(web_docs)
database.save_local("faiss_database")
context_str = "\n".join([f"Source: {doc.metadata['source']}\nContent: {doc.page_content}" for doc in web_docs])
prompt_template = """
Answer the question based on the following web search results, conversation context, and entity information:
Web Search Results:
{context}
Conversation Context: {conv_context}
Current Question: {question}
Topics: {topics}
Entity Information: {entities}
If the web search results don't contain relevant information, state that the information is not available in the search results.
Provide a summarized and direct answer to the question without mentioning the web search or these instructions.
Do not include any source information in your answer.
"""
prompt_val = ChatPromptTemplate.from_template(prompt_template)
formatted_prompt = prompt_val.format(
context=context_str,
conv_context=chatbot.get_context(),
question=question,
topics=", ".join(topics),
entities=json.dumps(serializable_entity_tracker)
)
full_response = generate_chunked_response(model, formatted_prompt)
answer_patterns = [
r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:",
r"Provide a concise and direct answer to the question:",
r"Answer:",
r"Provide a summarized and direct answer to the original question without mentioning the web search or these instructions:",
r"Do not include any source information in your answer."
]
for pattern in answer_patterns:
match = re.split(pattern, full_response, flags=re.IGNORECASE)
if len(match) > 1:
answer = match[-1].strip()
break
else:
answer = full_response.strip()
all_answers.append(answer)
break
except Exception as e:
print(f"Error in ask_question (attempt {attempt + 1}): {e}")
if attempt == max_attempts - 1:
all_answers.append(f"I apologize, but I'm having trouble processing the query due to its length or complexity.")
answer = "\n\n".join(all_answers)
sources = set(doc.metadata['source'] for doc in web_docs)
sources_section = "\n\nSources:\n" + "\n".join(f"- {source}" for source in sources)
answer += sources_section
return answer
else:
for attempt in range(max_attempts):
try:
if database is None:
return "No documents available. Please upload documents or enable web search to answer questions."
retriever = database.as_retriever()
relevant_docs = retriever.get_relevant_documents(contextualized_question)
context_str = "\n".join([doc.page_content for doc in relevant_docs])
if attempt > 0:
words = context_str.split()
context_str = " ".join(words[:int(len(words) * context_reduction_factor)])
prompt_template = """
Answer the question based on the following context:
Context:
{context}
Current Question: {question}
If the context doesn't contain relevant information, state that the information is not available.
Provide a summarized and direct answer to the question.
Do not include any source information in your answer.
"""
prompt_val = ChatPromptTemplate.from_template(prompt_template)
formatted_prompt = prompt_val.format(context=context_str, question=contextualized_question)
full_response = generate_chunked_response(model, formatted_prompt)
answer_patterns = [
r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:",
r"Provide a concise and direct answer to the question:",
r"Answer:",
r"Provide a summarized and direct answer to the original question without mentioning the web search or these instructions:",
r"Do not include any source information in your answer."
]
for pattern in answer_patterns:
match = re.split(pattern, full_response, flags=re.IGNORECASE)
if len(match) > 1:
answer = match[-1].strip()
break
else:
answer = full_response.strip()
return answer
except Exception as e:
print(f"Error in ask_question (attempt {attempt + 1}): {e}")
if "Input validation error" in str(e) and attempt < max_attempts - 1:
print(f"Reducing context length for next attempt")
elif attempt == max_attempts - 1:
return f"I apologize, but I'm having trouble processing your question due to its length or complexity. Could you please try rephrasing it more concisely?"
return "An unexpected error occurred. Please try again later."
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Enhanced Context-Driven Conversational Chatbot")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="pypdf")
update_button = gr.Button("Upload PDF")
update_output = gr.Textbox(label="Update Status")
update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Conversation")
question_input = gr.Textbox(label="Ask a question")
submit_button = gr.Button("Submit")
with gr.Column(scale=1):
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)
enhanced_context_driven_chatbot = EnhancedContextDrivenChatbot()
def chat(question, history, temperature, top_p, repetition_penalty, web_search):
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search, enhanced_context_driven_chatbot)
history.append((question, answer))
return "", history
submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox], outputs=[question_input, chatbot])
clear_button = gr.Button("Clear Cache")
clear_output = gr.Textbox(label="Cache Status")
clear_button.click(clear_cache, inputs=[], outputs=clear_output)
if __name__ == "__main__":
demo.launch()