Spaces:
Paused
Paused
Shreyas094
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ import gradio as gr
|
|
5 |
import pandas as pd
|
6 |
import requests
|
7 |
import random
|
8 |
-
import feedparser
|
9 |
import urllib.parse
|
10 |
from tempfile import NamedTemporaryFile
|
11 |
from typing import List
|
@@ -14,103 +13,19 @@ from langchain.prompts import PromptTemplate
|
|
14 |
from langchain.chains import LLMChain
|
15 |
from langchain_core.prompts import ChatPromptTemplate
|
16 |
from langchain_community.vectorstores import FAISS
|
17 |
-
from langchain_community.document_loaders import PyPDFLoader
|
18 |
from langchain_core.output_parsers import StrOutputParser
|
19 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
20 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
21 |
from langchain_community.llms import HuggingFaceHub
|
22 |
-
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
23 |
-
from langchain_core.documents import Document
|
24 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
25 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
26 |
-
from openpyxl import load_workbook
|
27 |
-
from openpyxl.utils.dataframe import dataframe_to_rows
|
28 |
-
import camelot
|
29 |
|
30 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
31 |
|
32 |
-
|
33 |
-
memory_database = {}
|
34 |
-
conversation_history = []
|
35 |
-
news_database = []
|
36 |
-
|
37 |
-
def load_and_split_document_basic(file):
|
38 |
"""Loads and splits the document into pages."""
|
39 |
loader = PyPDFLoader(file.name)
|
40 |
-
data = loader.load_and_split()
|
41 |
-
return data
|
42 |
-
|
43 |
-
def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]:
|
44 |
-
"""Loads and splits the document into chunks."""
|
45 |
-
loader = PyPDFLoader(file.name)
|
46 |
-
pages = loader.load()
|
47 |
-
|
48 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
49 |
-
chunk_size=1000,
|
50 |
-
chunk_overlap=200,
|
51 |
-
length_function=len,
|
52 |
-
)
|
53 |
-
|
54 |
-
chunks = text_splitter.split_documents(pages)
|
55 |
-
return chunks
|
56 |
-
|
57 |
-
def load_and_split_document_basic(file: NamedTemporaryFile, parser: str) -> List[Document]:
|
58 |
-
"""Loads and splits the document into pages."""
|
59 |
-
if parser == "PyPDF":
|
60 |
-
loader = PyPDFLoader(file.name)
|
61 |
-
elif parser == "PDFMiner":
|
62 |
-
loader = PDFMinerLoader(file.name)
|
63 |
-
elif parser == "Camelot":
|
64 |
-
return load_and_split_document_camelot(file)
|
65 |
-
else:
|
66 |
-
raise ValueError(f"Unknown parser: {parser}")
|
67 |
-
|
68 |
return loader.load_and_split()
|
69 |
|
70 |
-
def
|
71 |
-
"""Loads and splits the document into chunks using recursive character text splitter."""
|
72 |
-
if parser == "PyPDF":
|
73 |
-
loader = PyPDFLoader(file.name)
|
74 |
-
elif parser == "PDFMiner":
|
75 |
-
loader = PDFMinerLoader(file.name)
|
76 |
-
elif parser == "Camelot":
|
77 |
-
return load_and_split_document_camelot(file)
|
78 |
-
else:
|
79 |
-
raise ValueError(f"Unknown parser: {parser}")
|
80 |
-
|
81 |
-
pages = loader.load()
|
82 |
-
|
83 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
84 |
-
chunk_size=1000,
|
85 |
-
chunk_overlap=200,
|
86 |
-
length_function=len,
|
87 |
-
)
|
88 |
-
|
89 |
-
chunks = text_splitter.split_documents(pages)
|
90 |
-
return chunks
|
91 |
-
|
92 |
-
def load_and_split_document_camelot(file: NamedTemporaryFile) -> List[Document]:
|
93 |
-
"""Loads and splits the document using Camelot for tables and charts."""
|
94 |
-
tables = camelot.read_pdf(file.name, pages='all')
|
95 |
-
documents = []
|
96 |
-
|
97 |
-
for i, table in enumerate(tables):
|
98 |
-
df = table.df
|
99 |
-
content = df.to_string(index=False)
|
100 |
-
documents.append(Document(page_content=content, metadata={"source": file.name, "table_number": i+1}))
|
101 |
-
|
102 |
-
return documents
|
103 |
-
|
104 |
-
def load_document(file: NamedTemporaryFile, parser: str, use_recursive_splitter: bool) -> List[Document]:
|
105 |
-
"""Loads the document using the specified parser and splitting method."""
|
106 |
-
if parser == "Camelot":
|
107 |
-
return load_and_split_document_camelot(file)
|
108 |
-
elif use_recursive_splitter:
|
109 |
-
return load_and_split_document_recursive(file, parser)
|
110 |
-
else:
|
111 |
-
return load_and_split_document_basic(file, parser)
|
112 |
-
|
113 |
-
def update_vectors(files, use_recursive_splitter, selected_parser):
|
114 |
if not files:
|
115 |
return "Please upload at least one PDF file."
|
116 |
|
@@ -119,7 +34,7 @@ def update_vectors(files, use_recursive_splitter, selected_parser):
|
|
119 |
|
120 |
all_data = []
|
121 |
for file in files:
|
122 |
-
data = load_document(file
|
123 |
all_data.extend(data)
|
124 |
total_chunks += len(data)
|
125 |
|
@@ -131,20 +46,11 @@ def update_vectors(files, use_recursive_splitter, selected_parser):
|
|
131 |
|
132 |
database.save_local("faiss_database")
|
133 |
|
134 |
-
|
135 |
-
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {selected_parser} parser with {splitting_method}."
|
136 |
|
137 |
def get_embeddings():
|
138 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
139 |
|
140 |
-
def create_or_update_database(data, embeddings):
|
141 |
-
if os.path.exists("faiss_database"):
|
142 |
-
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True)
|
143 |
-
db.add_documents(data)
|
144 |
-
else:
|
145 |
-
db = FAISS.from_documents(data, embeddings)
|
146 |
-
db.save_local("faiss_database")
|
147 |
-
|
148 |
def clear_cache():
|
149 |
if os.path.exists("faiss_database"):
|
150 |
os.remove("faiss_database")
|
@@ -152,28 +58,6 @@ def clear_cache():
|
|
152 |
else:
|
153 |
return "No cache to clear."
|
154 |
|
155 |
-
def get_similarity(text1, text2):
|
156 |
-
vectorizer = TfidfVectorizer().fit_transform([text1, text2])
|
157 |
-
return cosine_similarity(vectorizer[0:1], vectorizer[1:2])[0][0]
|
158 |
-
|
159 |
-
prompt = """
|
160 |
-
Answer the question based on the following information:
|
161 |
-
|
162 |
-
Conversation History:
|
163 |
-
{history}
|
164 |
-
|
165 |
-
Context from documents:
|
166 |
-
{context}
|
167 |
-
|
168 |
-
Current Question: {question}
|
169 |
-
|
170 |
-
If the question is referring to the conversation history, use that information to answer.
|
171 |
-
If the question is not related to the conversation history, use the context from documents to answer.
|
172 |
-
If you don't have enough information to answer, say so.
|
173 |
-
|
174 |
-
Provide a concise and direct answer to the question:
|
175 |
-
"""
|
176 |
-
|
177 |
def get_model(temperature, top_p, repetition_penalty):
|
178 |
return HuggingFaceHub(
|
179 |
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
|
@@ -197,23 +81,10 @@ def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5):
|
|
197 |
full_response += chunk
|
198 |
return full_response.strip()
|
199 |
|
200 |
-
def manage_conversation_history(question, answer, history, max_history=5):
|
201 |
-
history.append({"question": question, "answer": answer})
|
202 |
-
if len(history) > max_history:
|
203 |
-
history.pop(0)
|
204 |
-
return history
|
205 |
-
|
206 |
-
def is_related_to_history(question, history, threshold=0.5): # Increased threshold from 0.3 to 0.5
|
207 |
-
if not history:
|
208 |
-
return False
|
209 |
-
history_text = " ".join([f"{h['question']} {h['answer']}" for h in history])
|
210 |
-
similarity = get_similarity(question, history_text)
|
211 |
-
return similarity > threshold
|
212 |
-
|
213 |
def extract_text_from_webpage(html):
|
214 |
soup = BeautifulSoup(html, 'html.parser')
|
215 |
for script in soup(["script", "style"]):
|
216 |
-
script.extract()
|
217 |
text = soup.get_text()
|
218 |
lines = (line.strip() for line in text.splitlines())
|
219 |
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
@@ -233,7 +104,7 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
233 |
escaped_term = urllib.parse.quote_plus(term)
|
234 |
start = 0
|
235 |
all_results = []
|
236 |
-
max_chars_per_page = 8000
|
237 |
|
238 |
print(f"Starting Google search for term: '{term}'")
|
239 |
|
@@ -292,338 +163,13 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
292 |
start += len(result_block)
|
293 |
|
294 |
print(f"Search completed. Total results: {len(all_results)}")
|
295 |
-
|
296 |
-
for i, result in enumerate(all_results, 1):
|
297 |
-
print(f"Result {i}:")
|
298 |
-
print(f" Link: {result['link']}")
|
299 |
-
if result['text']:
|
300 |
-
print(f" Text: {result['text'][:100]}...") # Print first 100 characters
|
301 |
-
else:
|
302 |
-
print(" Text: None")
|
303 |
-
print("End of search results")
|
304 |
-
|
305 |
if not all_results:
|
306 |
print("No search results found. Returning a default message.")
|
307 |
return [{"link": None, "text": "No information found in the web search results."}]
|
308 |
|
309 |
return all_results
|
310 |
|
311 |
-
def fetch_google_news_rss(query, num_results=10):
|
312 |
-
base_url = "https://news.google.com/rss/search"
|
313 |
-
params = {
|
314 |
-
"q": query,
|
315 |
-
"hl": "en-US",
|
316 |
-
"gl": "US",
|
317 |
-
"ceid": "US:en"
|
318 |
-
}
|
319 |
-
url = f"{base_url}?{urllib.parse.urlencode(params)}"
|
320 |
-
|
321 |
-
try:
|
322 |
-
feed = feedparser.parse(url)
|
323 |
-
articles = []
|
324 |
-
|
325 |
-
for entry in feed.entries[:num_results]:
|
326 |
-
article = {
|
327 |
-
"published_date": entry.get("published", "N/A"),
|
328 |
-
"title": entry.get("title", "N/A"),
|
329 |
-
"url": entry.get("link", "N/A"),
|
330 |
-
"content": entry.get("summary", "N/A")
|
331 |
-
}
|
332 |
-
articles.append(article)
|
333 |
-
|
334 |
-
return articles
|
335 |
-
except Exception as e:
|
336 |
-
print(f"Error fetching news: {str(e)}")
|
337 |
-
return []
|
338 |
-
|
339 |
-
def summarize_news_content(content, model):
|
340 |
-
prompt_template = """
|
341 |
-
Summarize the following news article in a concise manner:
|
342 |
-
{content}
|
343 |
-
|
344 |
-
Summary:
|
345 |
-
"""
|
346 |
-
prompt = ChatPromptTemplate.from_template(prompt_template)
|
347 |
-
formatted_prompt = prompt.format(content=content)
|
348 |
-
full_response = generate_chunked_response(model, formatted_prompt, max_tokens=200)
|
349 |
-
|
350 |
-
# Extract only the summary part
|
351 |
-
summary_parts = full_response.split("Summary:")
|
352 |
-
if len(summary_parts) > 1:
|
353 |
-
summary = summary_parts[-1].strip()
|
354 |
-
else:
|
355 |
-
summary = full_response.strip()
|
356 |
-
|
357 |
-
# Create a cleaned version of the summary
|
358 |
-
lines = summary.split('\n')
|
359 |
-
cleaned_lines = [line for line in lines if not line.strip().startswith(("Human:", "Assistant:", "Summary:"))]
|
360 |
-
cleaned_summary = ' '.join(cleaned_lines).strip()
|
361 |
-
|
362 |
-
return summary, cleaned_summary
|
363 |
-
|
364 |
-
def process_news(query, temperature, top_p, repetition_penalty, news_source):
|
365 |
-
model = get_model(temperature, top_p, repetition_penalty)
|
366 |
-
embed = get_embeddings()
|
367 |
-
|
368 |
-
if news_source in website_configs:
|
369 |
-
articles = fetch_news_from_website(news_source)
|
370 |
-
else:
|
371 |
-
return f"Invalid news source selected: {news_source}"
|
372 |
-
|
373 |
-
if not articles:
|
374 |
-
return f"No news articles found for {news_source}."
|
375 |
-
|
376 |
-
processed_articles = []
|
377 |
-
|
378 |
-
for article in articles:
|
379 |
-
try:
|
380 |
-
# Remove HTML tags from content
|
381 |
-
clean_content = BeautifulSoup(article["content"], "html.parser").get_text()
|
382 |
-
|
383 |
-
# If content is very short, use the title as content
|
384 |
-
if len(clean_content) < 50:
|
385 |
-
clean_content = article["title"]
|
386 |
-
|
387 |
-
full_summary, cleaned_summary = summarize_news_content(clean_content, model)
|
388 |
-
relevance_score = calculate_relevance_score(cleaned_summary, model)
|
389 |
-
|
390 |
-
processed_article = {
|
391 |
-
"published_date": article["published_date"],
|
392 |
-
"title": article["title"],
|
393 |
-
"url": article["url"],
|
394 |
-
"content": clean_content,
|
395 |
-
"summary": full_summary,
|
396 |
-
"cleaned_summary": cleaned_summary,
|
397 |
-
"relevance_score": relevance_score
|
398 |
-
}
|
399 |
-
processed_articles.append(processed_article)
|
400 |
-
except Exception as e:
|
401 |
-
print(f"Error processing article: {str(e)}")
|
402 |
-
|
403 |
-
if not processed_articles:
|
404 |
-
return f"Failed to process any news articles from {news_source}. Please try again or check the summarization process."
|
405 |
-
|
406 |
-
# Add processed articles to the database
|
407 |
-
docs = [Document(page_content=article["cleaned_summary"], metadata={
|
408 |
-
"source": article["url"],
|
409 |
-
"title": article["title"],
|
410 |
-
"published_date": article["published_date"],
|
411 |
-
"relevance_score": article["relevance_score"]
|
412 |
-
}) for article in processed_articles]
|
413 |
-
|
414 |
-
try:
|
415 |
-
if os.path.exists("faiss_database"):
|
416 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
417 |
-
database.add_documents(docs)
|
418 |
-
else:
|
419 |
-
database = FAISS.from_documents(docs, embed)
|
420 |
-
|
421 |
-
database.save_local("faiss_database")
|
422 |
-
|
423 |
-
# Update news_database for excel export
|
424 |
-
global news_database
|
425 |
-
news_database = processed_articles
|
426 |
-
|
427 |
-
return f"Processed and added {len(processed_articles)} news articles from {news_source} to the database."
|
428 |
-
except Exception as e:
|
429 |
-
return f"Error adding articles to the database: {str(e)}"
|
430 |
-
|
431 |
-
website_configs = {
|
432 |
-
"Golomt Bank": {
|
433 |
-
"base_url": "https://golomtbank.com/en/rnews",
|
434 |
-
"article_selector": 'div.entry-post.gt-box-shadow-2',
|
435 |
-
"title_selector": 'h2.entry-title',
|
436 |
-
"date_selector": 'div.entry-date.gt-meta',
|
437 |
-
"link_selector": 'a',
|
438 |
-
"content_selector": 'div.entry-content',
|
439 |
-
"next_page_selector": 'a.next',
|
440 |
-
"url_prefix": "https://golomtbank.com"
|
441 |
-
},
|
442 |
-
"Bank of America": {
|
443 |
-
"base_url": "https://newsroom.bankofamerica.com/content/newsroom/press-releases.html?page=1&year=all&category=press-release-categories/corporate-and-financial-news&categTitle=Corporate%20and%20Financial%20News",
|
444 |
-
"article_selector": 'div.card bg-bank-gray-2',
|
445 |
-
"title_selector": 'h2.pr-list-head',
|
446 |
-
"date_selector": 'div.prlist-date',
|
447 |
-
"link_selector": 'a',
|
448 |
-
"content_selector": 'div.richtext text',
|
449 |
-
"next_page_selector": 'a.brand-SystemRight',
|
450 |
-
"url_prefix": "https://newsroom.bankofamerica.com"
|
451 |
-
},
|
452 |
-
# Add more banks as needed
|
453 |
-
}
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
def fetch_articles_from_page(url, config):
|
458 |
-
response = requests.get(url)
|
459 |
-
response.raise_for_status()
|
460 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
461 |
-
articles = soup.find_all(config['article_selector'].split('.')[0], class_=config['article_selector'].split('.')[-1])
|
462 |
-
return articles, soup
|
463 |
-
|
464 |
-
def extract_articles(articles, config):
|
465 |
-
article_data = []
|
466 |
-
for article in articles:
|
467 |
-
title_div = article.find(config['title_selector'].split('.')[0], class_=config['title_selector'].split('.')[-1])
|
468 |
-
title = title_div.get_text(strip=True) if title_div else "No Title"
|
469 |
-
|
470 |
-
date_div = article.find(config['date_selector'].split('.')[0], class_=config['date_selector'].split('.')[-1])
|
471 |
-
date = date_div.get_text(strip=True) if date_div else "No Date"
|
472 |
-
|
473 |
-
link_tag = article.find(config['link_selector'])
|
474 |
-
link = link_tag['href'] if link_tag else "No Link"
|
475 |
-
if not link.startswith('http'):
|
476 |
-
link = config['url_prefix'] + link
|
477 |
-
|
478 |
-
article_response = requests.get(link)
|
479 |
-
article_response.raise_for_status()
|
480 |
-
article_soup = BeautifulSoup(article_response.content, 'html.parser')
|
481 |
-
article_content_div = article_soup.find(config['content_selector'].split('.')[0], class_=config['content_selector'].split('.')[-1])
|
482 |
-
article_content = article_content_div.get_text(strip=True) if article_content_div else "No content found"
|
483 |
-
|
484 |
-
article_data.append({
|
485 |
-
'title': title,
|
486 |
-
'date': date,
|
487 |
-
'link': link,
|
488 |
-
'content': article_content
|
489 |
-
})
|
490 |
-
return article_data
|
491 |
-
|
492 |
-
def fetch_news_from_website(website_key, num_results=20):
|
493 |
-
config = website_configs.get(website_key)
|
494 |
-
if not config:
|
495 |
-
return f"No configuration found for website: {website_key}"
|
496 |
-
|
497 |
-
base_url = config['base_url']
|
498 |
-
current_page_url = base_url
|
499 |
-
all_articles = []
|
500 |
-
|
501 |
-
try:
|
502 |
-
while len(all_articles) < num_results:
|
503 |
-
print(f"Fetching articles from: {current_page_url}")
|
504 |
-
articles, soup = fetch_articles_from_page(current_page_url, config)
|
505 |
-
if not articles:
|
506 |
-
print("No articles found on this page.")
|
507 |
-
break
|
508 |
-
all_articles.extend(extract_articles(articles, config))
|
509 |
-
print(f"Total articles fetched so far: {len(all_articles)}")
|
510 |
-
if len(all_articles) >= num_results:
|
511 |
-
all_articles = all_articles[:num_results]
|
512 |
-
break
|
513 |
-
next_page_link = soup.find(config['next_page_selector'])
|
514 |
-
if not next_page_link:
|
515 |
-
print("No next page link found.")
|
516 |
-
break
|
517 |
-
current_page_url = next_page_link['href']
|
518 |
-
if not current_page_url.startswith('http'):
|
519 |
-
current_page_url = config['url_prefix'] + current_page_url
|
520 |
-
|
521 |
-
return [
|
522 |
-
{
|
523 |
-
"published_date": article['date'],
|
524 |
-
"title": article['title'],
|
525 |
-
"url": article['link'],
|
526 |
-
"content": article['content']
|
527 |
-
} for article in all_articles
|
528 |
-
]
|
529 |
-
except Exception as e:
|
530 |
-
print(f"Error fetching news from {website_key}: {str(e)}")
|
531 |
-
return []
|
532 |
-
|
533 |
-
def export_news_to_excel():
|
534 |
-
global news_database
|
535 |
-
|
536 |
-
if not news_database:
|
537 |
-
return "No articles to export. Please fetch news first."
|
538 |
-
|
539 |
-
print("Exporting the following articles:")
|
540 |
-
for article in news_database:
|
541 |
-
print(f"Title: {article['title']}, Score: {article.get('relevance_score', 'N/A')}")
|
542 |
-
|
543 |
-
df = pd.DataFrame(news_database)
|
544 |
-
|
545 |
-
# Ensure relevance_score is present and convert to float
|
546 |
-
if 'relevance_score' not in df.columns:
|
547 |
-
df['relevance_score'] = 0.0
|
548 |
-
else:
|
549 |
-
df['relevance_score'] = pd.to_numeric(df['relevance_score'], errors='coerce').fillna(0.0)
|
550 |
-
|
551 |
-
# Use the cleaned summary for the Excel export
|
552 |
-
if 'cleaned_summary' in df.columns:
|
553 |
-
df['summary'] = df['cleaned_summary']
|
554 |
-
df = df.drop(columns=['cleaned_summary'])
|
555 |
-
|
556 |
-
# Reorder columns to put relevance_score after summary
|
557 |
-
columns = ['published_date', 'title', 'url', 'content', 'summary', 'relevance_score']
|
558 |
-
df = df[[col for col in columns if col in df.columns]]
|
559 |
-
|
560 |
-
print("Final DataFrame before export:")
|
561 |
-
print(df[['title', 'relevance_score']])
|
562 |
-
|
563 |
-
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
|
564 |
-
excel_path = tmp.name
|
565 |
-
df.to_excel(excel_path, index=False, engine='openpyxl')
|
566 |
-
print(f"Excel file saved to: {excel_path}")
|
567 |
-
print("Final relevance scores before export:")
|
568 |
-
for article in news_database:
|
569 |
-
print(f"Title: {article['title']}, Score: {article.get('relevance_score', 'N/A')}")
|
570 |
-
|
571 |
-
return excel_path
|
572 |
-
|
573 |
-
def calculate_relevance_score(summary, model):
|
574 |
-
prompt_template = PromptTemplate(
|
575 |
-
input_variables=["summary"],
|
576 |
-
template="""You are a financial analyst tasked with providing a relevance score to news summaries.
|
577 |
-
The score should be based on the financial significance and impact of the news.
|
578 |
-
|
579 |
-
Consider the following factors when assigning relevance:
|
580 |
-
- Earnings reports and financial performance
|
581 |
-
- Debt issuance or restructuring
|
582 |
-
- Mergers, acquisitions, or divestments
|
583 |
-
- Changes in key leadership (e.g., CEO, CFO)
|
584 |
-
- Regulatory changes or legal issues affecting the company
|
585 |
-
- Major product launches or market expansion
|
586 |
-
- Significant shifts in market share or competitive landscape
|
587 |
-
- Macroeconomic factors directly impacting the company or industry
|
588 |
-
- Stock price movements and trading volume changes
|
589 |
-
- Dividend announcements or changes in capital allocation
|
590 |
-
- Credit rating changes
|
591 |
-
- Material financial events (e.g., bankruptcy, major contracts)
|
592 |
-
|
593 |
-
Use the following scoring guide:
|
594 |
-
- 0.00-0.20: Not relevant to finance or economics
|
595 |
-
- 0.21-0.40: Slightly relevant, but minimal financial impact
|
596 |
-
- 0.41-0.60: Moderately relevant, some financial implications
|
597 |
-
- 0.61-0.80: Highly relevant, significant financial impact
|
598 |
-
- 0.81-1.00: Extremely relevant, major financial implications
|
599 |
-
|
600 |
-
Provide a score between 0.00 and 1.00, where 0.00 is not relevant at all, and 1.00 is extremely relevant from a financial perspective.
|
601 |
-
|
602 |
-
Summary: {summary}
|
603 |
-
|
604 |
-
Relevance Score:"""
|
605 |
-
)
|
606 |
-
|
607 |
-
chain = LLMChain(llm=model, prompt=prompt_template)
|
608 |
-
response = chain.run(summary=summary)
|
609 |
-
|
610 |
-
print(f"Raw relevance score response: {response}") # Debug print
|
611 |
-
|
612 |
-
try:
|
613 |
-
# Extract the score from the response
|
614 |
-
score_match = re.search(r'Relevance Score:\s*(\d+\.\d+)', response)
|
615 |
-
if score_match:
|
616 |
-
score = float(score_match.group(1))
|
617 |
-
final_score = min(max(score, 0.00), 1.00) # Ensure the score is between 0.00 and 1.00
|
618 |
-
print(f"Processed relevance score: {final_score}") # Debug print
|
619 |
-
return final_score
|
620 |
-
else:
|
621 |
-
raise ValueError("No relevance score found in the response")
|
622 |
-
except ValueError as e:
|
623 |
-
print(f"Error parsing relevance score: {e}")
|
624 |
-
return 0.00
|
625 |
-
|
626 |
-
|
627 |
def rephrase_for_search(query, model):
|
628 |
rephrase_prompt = PromptTemplate(
|
629 |
input_variables=["query"],
|
@@ -640,12 +186,9 @@ def rephrase_for_search(query, model):
|
|
640 |
chain = LLMChain(llm=model, prompt=rephrase_prompt)
|
641 |
response = chain.run(query=query).strip()
|
642 |
|
643 |
-
# Remove any potential "Rephrased query:" prefix
|
644 |
rephrased_query = response.replace("Rephrased query:", "").strip()
|
645 |
|
646 |
-
# If the rephrased query is too similar to the original, extract keywords
|
647 |
if rephrased_query.lower() == query.lower() or len(rephrased_query) > len(query) * 1.5:
|
648 |
-
# Simple keyword extraction: remove common words and punctuation
|
649 |
common_words = set(['the', 'a', 'an', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'from', 'up', 'about', 'into', 'over', 'after'])
|
650 |
keywords = [word.lower() for word in query.split() if word.lower() not in common_words]
|
651 |
keywords = [word for word in keywords if word.isalnum()]
|
@@ -653,9 +196,7 @@ def rephrase_for_search(query, model):
|
|
653 |
|
654 |
return rephrased_query
|
655 |
|
656 |
-
def ask_question(question, temperature, top_p, repetition_penalty, web_search
|
657 |
-
global conversation_history
|
658 |
-
|
659 |
if not question:
|
660 |
return "Please enter a question."
|
661 |
|
@@ -667,7 +208,6 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search, g
|
|
667 |
else:
|
668 |
database = None
|
669 |
|
670 |
-
# In the ask_question function:
|
671 |
if web_search:
|
672 |
original_query = question
|
673 |
rephrased_query = rephrase_for_search(original_query, model)
|
@@ -700,48 +240,29 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search, g
|
|
700 |
"""
|
701 |
prompt_val = ChatPromptTemplate.from_template(prompt_template)
|
702 |
formatted_prompt = prompt_val.format(context=context_str, original_question=question, rephrased_query=rephrased_query)
|
703 |
-
|
704 |
-
elif google_news_rss:
|
705 |
if database is None:
|
706 |
-
return "No
|
707 |
|
708 |
retriever = database.as_retriever()
|
709 |
relevant_docs = retriever.get_relevant_documents(question)
|
710 |
-
context_str = "\n".join([
|
711 |
|
712 |
prompt_template = """
|
713 |
-
Answer the question based on the following
|
714 |
-
|
715 |
{context}
|
716 |
Current Question: {question}
|
717 |
-
If the
|
718 |
-
Provide a concise and direct answer to the question
|
719 |
"""
|
720 |
prompt_val = ChatPromptTemplate.from_template(prompt_template)
|
721 |
formatted_prompt = prompt_val.format(context=context_str, question=question)
|
722 |
-
else:
|
723 |
-
if database is None:
|
724 |
-
return "No documents available. Please upload documents, enable web search, or fetch news articles to answer questions."
|
725 |
-
|
726 |
-
history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history])
|
727 |
-
|
728 |
-
# Always retrieve relevant documents
|
729 |
-
retriever = database.as_retriever()
|
730 |
-
relevant_docs = retriever.get_relevant_documents(question)
|
731 |
-
doc_context = "\n".join([doc.page_content for doc in relevant_docs])
|
732 |
-
|
733 |
-
# Combine document context with conversation history
|
734 |
-
context_str = f"Document context:\n{doc_context}\n\nConversation history:\n{history_str}"
|
735 |
-
|
736 |
-
prompt_val = ChatPromptTemplate.from_template(prompt)
|
737 |
-
formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question)
|
738 |
|
739 |
full_response = generate_chunked_response(model, formatted_prompt)
|
740 |
|
741 |
-
# Extract only the part after the last occurrence of a prompt-like sentence
|
742 |
answer_patterns = [
|
743 |
r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:",
|
744 |
-
r"Provide a concise and direct answer to the question without mentioning the news summaries or these instructions:",
|
745 |
r"Provide a concise and direct answer to the question:",
|
746 |
r"Answer:",
|
747 |
r"Provide a concise and direct answer to the original question without mentioning the web search or these instructions:"
|
@@ -753,111 +274,38 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search, g
|
|
753 |
answer = match[-1].strip()
|
754 |
break
|
755 |
else:
|
756 |
-
# If no pattern is found, return the full response
|
757 |
answer = full_response.strip()
|
758 |
|
759 |
-
if not web_search and not google_news_rss:
|
760 |
-
memory_database[question] = answer
|
761 |
-
conversation_history = manage_conversation_history(question, answer, conversation_history)
|
762 |
-
|
763 |
return answer
|
764 |
|
765 |
-
def extract_db_to_excel():
|
766 |
-
embed = get_embeddings()
|
767 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
768 |
-
|
769 |
-
documents = database.docstore._dict.values()
|
770 |
-
data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents]
|
771 |
-
df = pd.DataFrame(data)
|
772 |
-
|
773 |
-
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
|
774 |
-
excel_path = tmp.name
|
775 |
-
df.to_excel(excel_path, index=False)
|
776 |
-
|
777 |
-
return excel_path
|
778 |
-
|
779 |
-
def export_memory_db_to_excel():
|
780 |
-
data = [{"question": question, "answer": answer} for question, answer in memory_database.items()]
|
781 |
-
df_memory = pd.DataFrame(data)
|
782 |
-
|
783 |
-
data_history = [{"question": item["question"], "answer": item["answer"]} for item in conversation_history]
|
784 |
-
df_history = pd.DataFrame(data_history)
|
785 |
-
|
786 |
-
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
|
787 |
-
excel_path = tmp.name
|
788 |
-
with pd.ExcelWriter(excel_path, engine='openpyxl') as writer:
|
789 |
-
df_memory.to_excel(writer, sheet_name='Memory Database', index=False)
|
790 |
-
df_history.to_excel(writer, sheet_name='Conversation History', index=False)
|
791 |
-
|
792 |
-
return excel_path
|
793 |
-
|
794 |
# Gradio interface
|
795 |
with gr.Blocks() as demo:
|
796 |
-
gr.Markdown("# Chat with your PDF documents and
|
797 |
|
798 |
with gr.Row():
|
799 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
800 |
update_button = gr.Button("Update Vector Store")
|
801 |
-
use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False)
|
802 |
-
parser_dropdown = gr.Dropdown(
|
803 |
-
choices=["PyPDF", "PDFMiner", "Camelot"],
|
804 |
-
label="Select Parser",
|
805 |
-
value="PyPDF"
|
806 |
-
)
|
807 |
|
808 |
update_output = gr.Textbox(label="Update Status")
|
809 |
-
update_button.click(update_vectors, inputs=[file_input
|
810 |
|
811 |
with gr.Row():
|
812 |
with gr.Column(scale=2):
|
813 |
chatbot = gr.Chatbot(label="Conversation")
|
814 |
-
question_input = gr.Textbox(label="Ask a question about your documents or
|
815 |
submit_button = gr.Button("Submit")
|
816 |
with gr.Column(scale=1):
|
817 |
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
|
818 |
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
|
819 |
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
|
820 |
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)
|
821 |
-
google_news_rss_checkbox = gr.Checkbox(label="Google News RSS", value=False)
|
822 |
|
823 |
-
def chat(question, history, temperature, top_p, repetition_penalty, web_search
|
824 |
-
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search
|
825 |
history.append((question, answer))
|
826 |
return "", history
|
827 |
|
828 |
-
submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox
|
829 |
-
|
830 |
-
with gr.Row():
|
831 |
-
news_query_input = gr.Textbox(label="News Query")
|
832 |
-
news_source_dropdown = gr.Dropdown(
|
833 |
-
choices=list(website_configs.keys()),
|
834 |
-
label="Select News Source",
|
835 |
-
value=list(website_configs.keys())[0]
|
836 |
-
)
|
837 |
-
fetch_news_button = gr.Button("Fetch News")
|
838 |
-
|
839 |
-
news_fetch_output = gr.Textbox(label="News Fetch Status")
|
840 |
-
|
841 |
-
def fetch_news(query, temperature, top_p, repetition_penalty, news_source):
|
842 |
-
return process_news(query, temperature, top_p, repetition_penalty, news_source)
|
843 |
-
|
844 |
-
fetch_news_button.click(
|
845 |
-
fetch_news,
|
846 |
-
inputs=[news_query_input, temperature_slider, top_p_slider, repetition_penalty_slider, news_source_dropdown],
|
847 |
-
outputs=news_fetch_output
|
848 |
-
)
|
849 |
-
|
850 |
-
extract_button = gr.Button("Extract Database to Excel")
|
851 |
-
excel_output = gr.File(label="Download Excel File")
|
852 |
-
extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output)
|
853 |
-
|
854 |
-
export_memory_button = gr.Button("Export Memory Database to Excel")
|
855 |
-
memory_excel_output = gr.File(label="Download Memory Excel File")
|
856 |
-
export_memory_button.click(export_memory_db_to_excel, inputs=[], outputs=memory_excel_output)
|
857 |
-
|
858 |
-
export_news_button = gr.Button("Download News Excel File")
|
859 |
-
news_excel_output = gr.File(label="Download News Excel File")
|
860 |
-
export_news_button.click(export_news_to_excel, inputs=[], outputs=news_excel_output)
|
861 |
|
862 |
clear_button = gr.Button("Clear Cache")
|
863 |
clear_output = gr.Textbox(label="Cache Status")
|
|
|
5 |
import pandas as pd
|
6 |
import requests
|
7 |
import random
|
|
|
8 |
import urllib.parse
|
9 |
from tempfile import NamedTemporaryFile
|
10 |
from typing import List
|
|
|
13 |
from langchain.chains import LLMChain
|
14 |
from langchain_core.prompts import ChatPromptTemplate
|
15 |
from langchain_community.vectorstores import FAISS
|
16 |
+
from langchain_community.document_loaders import PyPDFLoader
|
17 |
from langchain_core.output_parsers import StrOutputParser
|
18 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
19 |
from langchain_community.llms import HuggingFaceHub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
22 |
|
23 |
+
def load_document(file: NamedTemporaryFile) -> List[Document]:
|
|
|
|
|
|
|
|
|
|
|
24 |
"""Loads and splits the document into pages."""
|
25 |
loader = PyPDFLoader(file.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
return loader.load_and_split()
|
27 |
|
28 |
+
def update_vectors(files):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
if not files:
|
30 |
return "Please upload at least one PDF file."
|
31 |
|
|
|
34 |
|
35 |
all_data = []
|
36 |
for file in files:
|
37 |
+
data = load_document(file)
|
38 |
all_data.extend(data)
|
39 |
total_chunks += len(data)
|
40 |
|
|
|
46 |
|
47 |
database.save_local("faiss_database")
|
48 |
|
49 |
+
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
|
|
|
50 |
|
51 |
def get_embeddings():
|
52 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def clear_cache():
|
55 |
if os.path.exists("faiss_database"):
|
56 |
os.remove("faiss_database")
|
|
|
58 |
else:
|
59 |
return "No cache to clear."
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
def get_model(temperature, top_p, repetition_penalty):
|
62 |
return HuggingFaceHub(
|
63 |
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
|
|
|
81 |
full_response += chunk
|
82 |
return full_response.strip()
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
def extract_text_from_webpage(html):
|
85 |
soup = BeautifulSoup(html, 'html.parser')
|
86 |
for script in soup(["script", "style"]):
|
87 |
+
script.extract()
|
88 |
text = soup.get_text()
|
89 |
lines = (line.strip() for line in text.splitlines())
|
90 |
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
|
|
104 |
escaped_term = urllib.parse.quote_plus(term)
|
105 |
start = 0
|
106 |
all_results = []
|
107 |
+
max_chars_per_page = 8000
|
108 |
|
109 |
print(f"Starting Google search for term: '{term}'")
|
110 |
|
|
|
163 |
start += len(result_block)
|
164 |
|
165 |
print(f"Search completed. Total results: {len(all_results)}")
|
166 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
if not all_results:
|
168 |
print("No search results found. Returning a default message.")
|
169 |
return [{"link": None, "text": "No information found in the web search results."}]
|
170 |
|
171 |
return all_results
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
def rephrase_for_search(query, model):
|
174 |
rephrase_prompt = PromptTemplate(
|
175 |
input_variables=["query"],
|
|
|
186 |
chain = LLMChain(llm=model, prompt=rephrase_prompt)
|
187 |
response = chain.run(query=query).strip()
|
188 |
|
|
|
189 |
rephrased_query = response.replace("Rephrased query:", "").strip()
|
190 |
|
|
|
191 |
if rephrased_query.lower() == query.lower() or len(rephrased_query) > len(query) * 1.5:
|
|
|
192 |
common_words = set(['the', 'a', 'an', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'from', 'up', 'about', 'into', 'over', 'after'])
|
193 |
keywords = [word.lower() for word in query.split() if word.lower() not in common_words]
|
194 |
keywords = [word for word in keywords if word.isalnum()]
|
|
|
196 |
|
197 |
return rephrased_query
|
198 |
|
199 |
+
def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
|
|
|
|
200 |
if not question:
|
201 |
return "Please enter a question."
|
202 |
|
|
|
208 |
else:
|
209 |
database = None
|
210 |
|
|
|
211 |
if web_search:
|
212 |
original_query = question
|
213 |
rephrased_query = rephrase_for_search(original_query, model)
|
|
|
240 |
"""
|
241 |
prompt_val = ChatPromptTemplate.from_template(prompt_template)
|
242 |
formatted_prompt = prompt_val.format(context=context_str, original_question=question, rephrased_query=rephrased_query)
|
243 |
+
else:
|
|
|
244 |
if database is None:
|
245 |
+
return "No documents available. Please upload documents or enable web search to answer questions."
|
246 |
|
247 |
retriever = database.as_retriever()
|
248 |
relevant_docs = retriever.get_relevant_documents(question)
|
249 |
+
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
250 |
|
251 |
prompt_template = """
|
252 |
+
Answer the question based on the following context:
|
253 |
+
Context:
|
254 |
{context}
|
255 |
Current Question: {question}
|
256 |
+
If the context doesn't contain relevant information, state that the information is not available.
|
257 |
+
Provide a concise and direct answer to the question:
|
258 |
"""
|
259 |
prompt_val = ChatPromptTemplate.from_template(prompt_template)
|
260 |
formatted_prompt = prompt_val.format(context=context_str, question=question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
full_response = generate_chunked_response(model, formatted_prompt)
|
263 |
|
|
|
264 |
answer_patterns = [
|
265 |
r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:",
|
|
|
266 |
r"Provide a concise and direct answer to the question:",
|
267 |
r"Answer:",
|
268 |
r"Provide a concise and direct answer to the original question without mentioning the web search or these instructions:"
|
|
|
274 |
answer = match[-1].strip()
|
275 |
break
|
276 |
else:
|
|
|
277 |
answer = full_response.strip()
|
278 |
|
|
|
|
|
|
|
|
|
279 |
return answer
|
280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
# Gradio interface
|
282 |
with gr.Blocks() as demo:
|
283 |
+
gr.Markdown("# Chat with your PDF documents and Web Search")
|
284 |
|
285 |
with gr.Row():
|
286 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
287 |
update_button = gr.Button("Update Vector Store")
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
update_output = gr.Textbox(label="Update Status")
|
290 |
+
update_button.click(update_vectors, inputs=[file_input], outputs=update_output)
|
291 |
|
292 |
with gr.Row():
|
293 |
with gr.Column(scale=2):
|
294 |
chatbot = gr.Chatbot(label="Conversation")
|
295 |
+
question_input = gr.Textbox(label="Ask a question about your documents or use web search")
|
296 |
submit_button = gr.Button("Submit")
|
297 |
with gr.Column(scale=1):
|
298 |
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
|
299 |
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
|
300 |
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
|
301 |
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)
|
|
|
302 |
|
303 |
+
def chat(question, history, temperature, top_p, repetition_penalty, web_search):
|
304 |
+
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search)
|
305 |
history.append((question, answer))
|
306 |
return "", history
|
307 |
|
308 |
+
submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox], outputs=[question_input, chatbot])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
clear_button = gr.Button("Clear Cache")
|
311 |
clear_output = gr.Textbox(label="Cache Status")
|