Spaces:
Paused
Paused
Shreyas094
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -273,12 +273,16 @@ def rank_search_results(titles, summaries, model):
|
|
273 |
|
274 |
try:
|
275 |
ranks_str = generate_chunked_response(model, ranking_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
ranks = [float(rank.strip()) for rank in ranks_str.split(',') if rank.strip()]
|
277 |
|
278 |
-
# Check if we have the correct number of ranks
|
279 |
if len(ranks) != len(titles):
|
280 |
print(f"Warning: Number of ranks ({len(ranks)}) does not match number of titles ({len(titles)})")
|
281 |
-
print(f"Model output: {ranks_str}")
|
282 |
return list(range(1, len(titles) + 1))
|
283 |
|
284 |
return ranks
|
@@ -295,12 +299,6 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
|
295 |
model = get_model(temperature, top_p, repetition_penalty)
|
296 |
embed = get_embeddings()
|
297 |
|
298 |
-
# Check if the FAISS database exists
|
299 |
-
if os.path.exists("faiss_database"):
|
300 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
301 |
-
else:
|
302 |
-
database = None
|
303 |
-
|
304 |
if web_search:
|
305 |
search_results = google_search(question)
|
306 |
|
@@ -323,6 +321,8 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
|
323 |
if not processed_results:
|
324 |
return "No valid search results found."
|
325 |
|
|
|
|
|
326 |
# Rank the results
|
327 |
titles = [r["title"] for r in processed_results]
|
328 |
summaries = [r["summary"] for r in processed_results]
|
@@ -332,6 +332,8 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
|
332 |
print(f"Error in ranking results: {str(e)}. Using default ranking.")
|
333 |
ranks = list(range(1, len(processed_results) + 1))
|
334 |
|
|
|
|
|
335 |
# Update Vector DB
|
336 |
current_date = datetime.now().strftime("%Y-%m-%d")
|
337 |
update_vector_db_with_search_results(processed_results, ranks, current_date)
|
@@ -416,32 +418,45 @@ def update_vectors(files, use_recursive_splitter):
|
|
416 |
|
417 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
|
418 |
|
419 |
-
def update_vector_db_with_search_results(search_results,
|
420 |
embed = get_embeddings()
|
421 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) if os.path.exists("faiss_database") else FAISS.from_documents([], embed)
|
422 |
-
|
423 |
-
current_date = datetime.now().strftime("%Y-%m-%d")
|
424 |
|
425 |
documents = []
|
426 |
-
for result,
|
427 |
-
if summary:
|
428 |
doc = Document(
|
429 |
-
page_content=summary,
|
430 |
metadata={
|
431 |
"search_date": current_date,
|
432 |
-
"search_title": result
|
433 |
-
"search_content": result
|
434 |
-
"search_summary": summary,
|
435 |
"rank": rank
|
436 |
}
|
437 |
)
|
438 |
documents.append(doc)
|
439 |
|
440 |
-
if documents:
|
441 |
-
database.add_documents(documents)
|
442 |
-
database.save_local("faiss_database")
|
443 |
-
else:
|
444 |
print("No valid documents to add to the database.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
|
446 |
def export_vector_db_to_excel():
|
447 |
embed = get_embeddings()
|
|
|
273 |
|
274 |
try:
|
275 |
ranks_str = generate_chunked_response(model, ranking_prompt)
|
276 |
+
print(f"Model output for ranking: {ranks_str}")
|
277 |
+
|
278 |
+
if not ranks_str.strip():
|
279 |
+
print("Model returned an empty string for ranking.")
|
280 |
+
return list(range(1, len(titles) + 1))
|
281 |
+
|
282 |
ranks = [float(rank.strip()) for rank in ranks_str.split(',') if rank.strip()]
|
283 |
|
|
|
284 |
if len(ranks) != len(titles):
|
285 |
print(f"Warning: Number of ranks ({len(ranks)}) does not match number of titles ({len(titles)})")
|
|
|
286 |
return list(range(1, len(titles) + 1))
|
287 |
|
288 |
return ranks
|
|
|
299 |
model = get_model(temperature, top_p, repetition_penalty)
|
300 |
embed = get_embeddings()
|
301 |
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
if web_search:
|
303 |
search_results = google_search(question)
|
304 |
|
|
|
321 |
if not processed_results:
|
322 |
return "No valid search results found."
|
323 |
|
324 |
+
print(f"Number of processed results: {len(processed_results)}")
|
325 |
+
|
326 |
# Rank the results
|
327 |
titles = [r["title"] for r in processed_results]
|
328 |
summaries = [r["summary"] for r in processed_results]
|
|
|
332 |
print(f"Error in ranking results: {str(e)}. Using default ranking.")
|
333 |
ranks = list(range(1, len(processed_results) + 1))
|
334 |
|
335 |
+
print(f"Number of ranks: {len(ranks)}")
|
336 |
+
|
337 |
# Update Vector DB
|
338 |
current_date = datetime.now().strftime("%Y-%m-%d")
|
339 |
update_vector_db_with_search_results(processed_results, ranks, current_date)
|
|
|
418 |
|
419 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
|
420 |
|
421 |
+
def update_vector_db_with_search_results(search_results, ranks, current_date):
|
422 |
embed = get_embeddings()
|
|
|
|
|
|
|
423 |
|
424 |
documents = []
|
425 |
+
for result, rank in zip(search_results, ranks):
|
426 |
+
if result.get("summary"):
|
427 |
doc = Document(
|
428 |
+
page_content=result["summary"],
|
429 |
metadata={
|
430 |
"search_date": current_date,
|
431 |
+
"search_title": result.get("title", ""),
|
432 |
+
"search_content": result.get("content", ""),
|
433 |
+
"search_summary": result["summary"],
|
434 |
"rank": rank
|
435 |
}
|
436 |
)
|
437 |
documents.append(doc)
|
438 |
|
439 |
+
if not documents:
|
|
|
|
|
|
|
440 |
print("No valid documents to add to the database.")
|
441 |
+
return
|
442 |
+
|
443 |
+
texts = [doc.page_content for doc in documents]
|
444 |
+
metadatas = [doc.metadata for doc in documents]
|
445 |
+
|
446 |
+
print(f"Number of documents to embed: {len(texts)}")
|
447 |
+
print(f"First document text: {texts[0][:100]}...") # Print first 100 characters of the first document
|
448 |
+
|
449 |
+
try:
|
450 |
+
if os.path.exists("faiss_database"):
|
451 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
452 |
+
database.add_texts(texts, metadatas=metadatas)
|
453 |
+
else:
|
454 |
+
database = FAISS.from_texts(texts, embed, metadatas=metadatas)
|
455 |
+
|
456 |
+
database.save_local("faiss_database")
|
457 |
+
print("Database updated successfully.")
|
458 |
+
except Exception as e:
|
459 |
+
print(f"Error updating database: {str(e)}")
|
460 |
|
461 |
def export_vector_db_to_excel():
|
462 |
embed = get_embeddings()
|