Spaces:
Paused
Paused
Shreyas094
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,236 +7,212 @@ import urllib.parse
|
|
7 |
from datetime import datetime, timedelta
|
8 |
import re
|
9 |
import os
|
10 |
-
|
11 |
# List of user agents to rotate through
|
12 |
_useragent_list = [
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
]
|
20 |
-
|
21 |
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
22 |
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_TOKEN')}"}
|
23 |
-
|
24 |
def query_llama(payload):
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
def google_search(term, num_results=1, lang="en", timeout=30, safe="active", ssl_verify=None, days_back=90):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
else:
|
105 |
-
print("No link found in result.")
|
106 |
-
|
107 |
-
start += len(result_block)
|
108 |
-
attempts += 1
|
109 |
-
except requests.exceptions.RequestException as e:
|
110 |
-
print(f"Error fetching search results: {e}")
|
111 |
-
attempts += 1
|
112 |
-
|
113 |
-
print(f"Total results fetched: {len(all_results)}")
|
114 |
-
return all_results
|
115 |
-
|
116 |
def extract_text_from_webpage(html_content):
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
132 |
-
|
133 |
-
# Drop blank lines
|
134 |
-
text = '\n'.join(chunk for chunk in chunks if chunk)
|
135 |
-
|
136 |
-
return text
|
137 |
-
|
138 |
def filter_relevant_content(text):
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
# Join the relevant sentences back into a single string
|
150 |
-
filtered_text = ' '.join(relevant_sentences)
|
151 |
-
|
152 |
-
return filtered_text
|
153 |
-
|
154 |
def chunk_text(text, max_chunk_size=1000, overlap=100):
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
return overlapped_chunks
|
191 |
-
|
192 |
-
def summarize_financial_news(query):
|
193 |
-
"""Search for financial news, extract relevant content, and summarize"""
|
194 |
-
search_results = google_search(query, num_results=1)
|
195 |
-
|
196 |
-
all_filtered_text = ""
|
197 |
-
for result in search_results:
|
198 |
-
if result['text']:
|
199 |
-
filtered_text = filter_relevant_content(result['text'])
|
200 |
-
all_filtered_text += filtered_text + "\n\n"
|
201 |
-
|
202 |
-
if not all_filtered_text:
|
203 |
-
return "No relevant financial information found."
|
204 |
-
|
205 |
-
# Chunk the filtered text
|
206 |
-
chunks = chunk_text(all_filtered_text, max_chunk_size=3000, overlap=200)
|
207 |
-
|
208 |
-
summaries = []
|
209 |
-
for chunk in chunks:
|
210 |
-
prompt = f"""You are a financial analyst. Summarize the following text from a financial perspective:
|
211 |
{chunk}
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
# Final summarization of combined summaries
|
222 |
-
final_prompt = f"""As a financial analyst, provide a coherent and comprehensive summary of the following financial information:
|
223 |
{combined_summary}
|
224 |
Focus on the most important financial implications and analysis."""
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
# Gradio Interface
|
|
|
|
|
234 |
iface = gr.Interface(
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
240 |
)
|
241 |
-
|
242 |
-
iface.launch()
|
|
|
7 |
from datetime import datetime, timedelta
|
8 |
import re
|
9 |
import os
|
10 |
+
import PyPDF2
|
11 |
# List of user agents to rotate through
|
12 |
_useragent_list = [
|
13 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
14 |
+
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
15 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
|
16 |
+
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
|
17 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
|
18 |
+
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
|
19 |
]
|
|
|
20 |
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
21 |
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_TOKEN')}"}
|
|
|
22 |
def query_llama(payload):
|
23 |
+
"""Send a query to the Llama model via Hugging Face API"""
|
24 |
+
try:
|
25 |
+
print(f"Payload: {payload}") # Debug: Print payload
|
26 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
27 |
+
response.raise_for_status()
|
28 |
+
return response.json()
|
29 |
+
except requests.exceptions.RequestException as e:
|
30 |
+
print(f"Error querying Llama model: {e}")
|
31 |
+
return None
|
|
|
32 |
def google_search(term, num_results=1, lang="en", timeout=30, safe="active", ssl_verify=None, days_back=90):
|
33 |
+
"""Perform a Google search and return results"""
|
34 |
+
print(f"Searching for term: {term}")
|
35 |
+
# Calculate the date range
|
36 |
+
end_date = datetime.now()
|
37 |
+
start_date = end_date - timedelta(days=days_back)
|
38 |
+
# Format dates as strings
|
39 |
+
start_date_str = start_date.strftime("%Y-%m-%d")
|
40 |
+
end_date_str = end_date.strftime("%Y-%m-%d")
|
41 |
+
# Add the date range to the search term
|
42 |
+
search_term = f"{term} financial earnings report after:{start_date_str} before:{end_date_str}"
|
43 |
+
escaped_term = urllib.parse.quote_plus(search_term)
|
44 |
+
start = 0
|
45 |
+
all_results = []
|
46 |
+
max_attempts = num_results * 2 # Allow for some failed attempts
|
47 |
+
with requests.Session() as session:
|
48 |
+
attempts = 0
|
49 |
+
while len(all_results) < num_results and attempts < max_attempts:
|
50 |
+
try:
|
51 |
+
# Choose a random user agent
|
52 |
+
user_agent = random.choice(_useragent_list)
|
53 |
+
headers = {'User-Agent': user_agent}
|
54 |
+
resp = session.get(
|
55 |
+
url="https://www.google.com/search",
|
56 |
+
headers=headers,
|
57 |
+
params={
|
58 |
+
"q": search_term,
|
59 |
+
"num": num_results - len(all_results),
|
60 |
+
"hl": lang,
|
61 |
+
"start": start,
|
62 |
+
"safe": safe,
|
63 |
+
},
|
64 |
+
timeout=timeout,
|
65 |
+
verify=ssl_verify,
|
66 |
+
)
|
67 |
+
resp.raise_for_status()
|
68 |
+
soup = BeautifulSoup(resp.text, "html.parser")
|
69 |
+
result_block = soup.find_all("div", attrs={"class": "g"})
|
70 |
+
if not result_block:
|
71 |
+
print("No more results found.")
|
72 |
+
break
|
73 |
+
for result in result_block:
|
74 |
+
if len(all_results) >= num_results:
|
75 |
+
break
|
76 |
+
link = result.find("a", href=True)
|
77 |
+
if link:
|
78 |
+
link = link["href"]
|
79 |
+
print(f"Found link: {link}")
|
80 |
+
try:
|
81 |
+
webpage = session.get(link, headers=headers, timeout=timeout)
|
82 |
+
webpage.raise_for_status()
|
83 |
+
visible_text = extract_text_from_webpage(webpage.text)
|
84 |
+
all_results.append({"link": link, "text": visible_text})
|
85 |
+
except requests.exceptions.HTTPError as e:
|
86 |
+
if e.response.status_code == 403:
|
87 |
+
print(f"403 Forbidden error for {link}, skipping...")
|
88 |
+
else:
|
89 |
+
print(f"HTTP error {e.response.status_code} for {link}, skipping...")
|
90 |
+
except requests.exceptions.RequestException as e:
|
91 |
+
print(f"Error fetching or processing {link}: {e}")
|
92 |
+
else:
|
93 |
+
print("No link found in result.")
|
94 |
+
start += len(result_block)
|
95 |
+
attempts += 1
|
96 |
+
except requests.exceptions.RequestException as e:
|
97 |
+
print(f"Error fetching search results: {e}")
|
98 |
+
attempts += 1
|
99 |
+
print(f"Total results fetched: {len(all_results)}")
|
100 |
+
return all_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
def extract_text_from_webpage(html_content):
|
102 |
+
"""Extract visible text from HTML content"""
|
103 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
104 |
+
# Remove script and style elements
|
105 |
+
for script in soup(["script", "style"]):
|
106 |
+
script.decompose()
|
107 |
+
# Get text
|
108 |
+
text = soup.get_text()
|
109 |
+
# Break into lines and remove leading and trailing space on each
|
110 |
+
lines = (line.strip() for line in text.splitlines())
|
111 |
+
# Break multi-headlines into a line each
|
112 |
+
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
113 |
+
# Drop blank lines
|
114 |
+
text = '\n'.join(chunk for chunk in chunks if chunk)
|
115 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
def filter_relevant_content(text):
|
117 |
+
"""Filter out irrelevant content"""
|
118 |
+
# List of keywords related to financial reports
|
119 |
+
keywords = ['revenue', 'profit', 'earnings', 'financial', 'quarter', 'fiscal', 'growth', 'income', 'loss', 'dividend']
|
120 |
+
# Split the text into sentences
|
121 |
+
sentences = re.split(r'(?<=[.!?])\s+', text)
|
122 |
+
# Filter sentences containing at least one keyword
|
123 |
+
relevant_sentences = [sentence for sentence in sentences if any(keyword in sentence.lower() for keyword in keywords)]
|
124 |
+
# Join the relevant sentences back into a single string
|
125 |
+
filtered_text = ' '.join(relevant_sentences)
|
126 |
+
return filtered_text
|
|
|
|
|
|
|
|
|
|
|
127 |
def chunk_text(text, max_chunk_size=1000, overlap=100):
|
128 |
+
# List of keywords that might indicate new sections
|
129 |
+
section_keywords = ["revenue", "income", "profit", "loss", "expenses", "outlook", "forecast", "quarter", "year"]
|
130 |
+
# Split text into sentences
|
131 |
+
sentences = re.split(r'(?<=[.!?])\s+', text)
|
132 |
+
chunks = []
|
133 |
+
current_chunk = ""
|
134 |
+
for sentence in sentences:
|
135 |
+
if len(current_chunk) + len(sentence) > max_chunk_size:
|
136 |
+
# If adding this sentence exceeds max_chunk_size, start a new chunk
|
137 |
+
chunks.append(current_chunk.strip())
|
138 |
+
current_chunk = sentence + " "
|
139 |
+
elif any(keyword in sentence.lower() for keyword in section_keywords):
|
140 |
+
# If sentence contains a section keyword, start a new chunk
|
141 |
+
if current_chunk:
|
142 |
+
chunks.append(current_chunk.strip())
|
143 |
+
current_chunk = sentence + " "
|
144 |
+
else:
|
145 |
+
current_chunk += sentence + " "
|
146 |
+
# Add the last chunk if it's not empty
|
147 |
+
if current_chunk:
|
148 |
+
chunks.append(current_chunk.strip())
|
149 |
+
# Add overlap
|
150 |
+
overlapped_chunks = []
|
151 |
+
for i, chunk in enumerate(chunks):
|
152 |
+
if i > 0:
|
153 |
+
chunk = chunks[i-1][-overlap:] + chunk
|
154 |
+
if i < len(chunks) - 1:
|
155 |
+
chunk = chunk + chunks[i+1][:overlap]
|
156 |
+
overlapped_chunks.append(chunk)
|
157 |
+
return overlapped_chunks
|
158 |
+
def summarize_text(text, context_instructions):
|
159 |
+
chunks = chunk_text(text, max_chunk_size=3000, overlap=200)
|
160 |
+
summaries = []
|
161 |
+
for chunk in chunks:
|
162 |
+
prompt = f"""You are a financial analyst. Summarize the following text from a financial perspective:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
{chunk}
|
164 |
+
{context_instructions}"""
|
165 |
+
summary = query_llama({"inputs": prompt, "parameters": {"max_length": 1000}})
|
166 |
+
if summary and isinstance(summary, list) and 'generated_text' in summary[0]:
|
167 |
+
summaries.append(summary[0]['generated_text'])
|
168 |
+
# Combine summaries
|
169 |
+
combined_summary = "\n\n".join(summaries)
|
170 |
+
# Final summarization of combined summaries
|
171 |
+
final_prompt = f"""As a financial analyst, provide a coherent and comprehensive summary of the following financial information:
|
|
|
|
|
|
|
172 |
{combined_summary}
|
173 |
Focus on the most important financial implications and analysis."""
|
174 |
+
final_summary = query_llama({"inputs": final_prompt, "parameters": {"max_length": 3000}})
|
175 |
+
if final_summary and isinstance(final_summary, list) and 'generated_text' in final_summary[0]:
|
176 |
+
return final_summary[0]['generated_text']
|
177 |
+
else:
|
178 |
+
return "Unable to generate summary due to an error."
|
179 |
+
def summarize_financial_news(query, read_pdf=False, pdf=None):
|
180 |
+
"""Search for financial news, extract relevant content
|
181 |
+
, and summarize"""
|
182 |
+
all_filtered_text = ""
|
183 |
+
if read_pdf and pdf is not None:
|
184 |
+
pdf_text = extract_text_from_pdf(pdf)
|
185 |
+
all_filtered_text += pdf_text + "\n\n"
|
186 |
+
else:
|
187 |
+
search_results = google_search(query, num_results=1)
|
188 |
+
for result in search_results:
|
189 |
+
if result['text']:
|
190 |
+
filtered_text = filter_relevant_content(result['text'])
|
191 |
+
all_filtered_text += filtered_text + "\n\n"
|
192 |
+
if not all_filtered_text:
|
193 |
+
return "No relevant financial information found."
|
194 |
+
context_instructions = "Provide a detailed, coherent summary focusing on financial implications and analysis."
|
195 |
+
return summarize_text(all_filtered_text, context_instructions)
|
196 |
+
def extract_text_from_pdf(pdf):
|
197 |
+
"""Extract text from each page of the PDF"""
|
198 |
+
reader = PyPDF2.PdfFileReader(pdf)
|
199 |
+
text = ""
|
200 |
+
for page_num in range(reader.getNumPages()):
|
201 |
+
page = reader.getPage(page_num)
|
202 |
+
text += page.extract_text() + "\n"
|
203 |
+
return text
|
204 |
# Gradio Interface
|
205 |
+
def interface_function(query, read_pdf, pdf):
|
206 |
+
return summarize_financial_news(query, read_pdf, pdf)
|
207 |
iface = gr.Interface(
|
208 |
+
fn=interface_function,
|
209 |
+
inputs=[
|
210 |
+
gr.Textbox(lines=2, placeholder="Enter a company name or financial topic..."),
|
211 |
+
gr.Checkbox(label="Read PDF"),
|
212 |
+
gr.File(label="Upload PDF", type="file")
|
213 |
+
],
|
214 |
+
outputs="text",
|
215 |
+
title="Financial News Summarizer",
|
216 |
+
description="Enter a company name or financial topic to get a summary of recent financial news. Optionally, upload a PDF to summarize its content."
|
217 |
)
|
218 |
+
iface.launch()
|
|