Spaces:
Paused
Paused
Shreyas094
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import requests
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
# List of user agents
|
7 |
+
_useragent_list = [
|
8 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
9 |
+
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
10 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
|
11 |
+
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
|
12 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
|
13 |
+
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
|
14 |
+
]
|
15 |
+
|
16 |
+
# Function to extract visible text from HTML content of a webpage
|
17 |
+
def extract_text_from_webpage(html):
|
18 |
+
print("Extracting text from webpage...")
|
19 |
+
soup = BeautifulSoup(html, 'html.parser')
|
20 |
+
for script in soup(["script", "style"]):
|
21 |
+
script.extract() # Remove scripts and styles
|
22 |
+
text = soup.get_text()
|
23 |
+
lines = (line.strip() for line in text.splitlines())
|
24 |
+
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
25 |
+
text = '\n'.join(chunk for chunk in chunks if chunk)
|
26 |
+
print(f"Extracted text length: {len(text)}")
|
27 |
+
return text
|
28 |
+
|
29 |
+
# Function to perform a Google search and retrieve results
|
30 |
+
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None):
|
31 |
+
"""Performs a Google search and returns the results."""
|
32 |
+
print(f"Searching for term: {term}")
|
33 |
+
escaped_term = requests.utils.quote(term)
|
34 |
+
start = 0
|
35 |
+
all_results = []
|
36 |
+
max_chars_per_page = 8000 # Limit the number of characters from each webpage to stay under the token limit
|
37 |
+
|
38 |
+
with requests.Session() as session:
|
39 |
+
while start < num_results:
|
40 |
+
print(f"Fetching search results starting from: {start}")
|
41 |
+
try:
|
42 |
+
# Choose a random user agent
|
43 |
+
user_agent = random.choice(_useragent_list)
|
44 |
+
headers = {
|
45 |
+
'User-Agent': user_agent
|
46 |
+
}
|
47 |
+
print(f"Using User-Agent: {headers['User-Agent']}")
|
48 |
+
|
49 |
+
resp = session.get(
|
50 |
+
url="https://www.google.com/search",
|
51 |
+
headers=headers,
|
52 |
+
params={
|
53 |
+
"q": term,
|
54 |
+
"num": num_results - start,
|
55 |
+
"hl": lang,
|
56 |
+
"start": start,
|
57 |
+
"safe": safe,
|
58 |
+
},
|
59 |
+
timeout=timeout,
|
60 |
+
verify=ssl_verify,
|
61 |
+
)
|
62 |
+
resp.raise_for_status()
|
63 |
+
except requests.exceptions.RequestException as e:
|
64 |
+
print(f"Error fetching search results: {e}")
|
65 |
+
break
|
66 |
+
|
67 |
+
soup = BeautifulSoup(resp.text, "html.parser")
|
68 |
+
result_block = soup.find_all("div", attrs={"class": "g"})
|
69 |
+
if not result_block:
|
70 |
+
print("No more results found.")
|
71 |
+
break
|
72 |
+
for result in result_block:
|
73 |
+
link = result.find("a", href=True)
|
74 |
+
if link:
|
75 |
+
link = link["href"]
|
76 |
+
print(f"Found link: {link}")
|
77 |
+
try:
|
78 |
+
webpage = session.get(link, headers=headers, timeout=timeout)
|
79 |
+
webpage.raise_for_status()
|
80 |
+
visible_text = extract_text_from_webpage(webpage.text)
|
81 |
+
if len(visible_text) > max_chars_per_page:
|
82 |
+
visible_text = visible_text[:max_chars_per_page] + "..."
|
83 |
+
all_results.append({"link": link, "text": visible_text})
|
84 |
+
except requests.exceptions.RequestException as e:
|
85 |
+
print(f"Error fetching or processing {link}: {e}")
|
86 |
+
all_results.append({"link": link, "text": None})
|
87 |
+
else:
|
88 |
+
print("No link found in result.")
|
89 |
+
all_results.append({"link": None, "text": None})
|
90 |
+
start += len(result_block)
|
91 |
+
print(f"Total results fetched: {len(all_results)}")
|
92 |
+
return all_results
|
93 |
+
|
94 |
+
# Load the Mixtral-8x7B-Instruct model and tokenizer
|
95 |
+
model_name = 'mistralai/Mistral-7B-Instruct-v0.3'
|
96 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
97 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
98 |
+
|
99 |
+
# Example usage
|
100 |
+
search_term = "How did Tesla perform in Q1 2024"
|
101 |
+
search_results = google_search(search_term, num_results=3)
|
102 |
+
|
103 |
+
# Combine text from search results to create a prompt
|
104 |
+
combined_text = "\n\n".join(result['text'] for result in search_results if result['text'])
|
105 |
+
|
106 |
+
# Tokenize the input text
|
107 |
+
inputs = tokenizer(combined_text, return_tensors="pt")
|
108 |
+
|
109 |
+
# Generate a response
|
110 |
+
outputs = model.generate(**inputs, max_length=150, temperature=0.7, top_p=0.9, top_k=50)
|
111 |
+
|
112 |
+
# Decode the generated tokens to a readable string
|
113 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
114 |
+
|
115 |
+
# Print the response
|
116 |
+
print(response)
|