Spaces:
Paused
Paused
Shreyas094
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -20,14 +20,13 @@ from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
|
20 |
from langchain_core.documents import Document
|
21 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
22 |
from sklearn.metrics.pairwise import cosine_similarity
|
23 |
-
from datetime import datetime
|
24 |
-
from huggingface_hub.utils import HfHubHTTPError
|
25 |
|
26 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
27 |
|
28 |
# Memory database to store question-answer pairs
|
29 |
memory_database = {}
|
30 |
conversation_history = []
|
|
|
31 |
|
32 |
def load_and_split_document_basic(file):
|
33 |
"""Loads and splits the document into pages."""
|
@@ -101,25 +100,15 @@ def get_model(temperature, top_p, repetition_penalty):
|
|
101 |
huggingfacehub_api_token=huggingface_token
|
102 |
)
|
103 |
|
104 |
-
def generate_chunked_response(model, prompt, max_tokens=
|
105 |
full_response = ""
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
chunk = model(prompt + full_response, max_new_tokens=min(200, 7800 - total_length))
|
111 |
-
chunk = chunk.strip()
|
112 |
-
if not chunk:
|
113 |
-
break
|
114 |
full_response += chunk
|
115 |
-
total_length += len(chunk.split()) # Approximate token count
|
116 |
-
|
117 |
-
if chunk.endswith((".", "!", "?")):
|
118 |
-
break
|
119 |
-
except Exception as e:
|
120 |
-
print(f"Error generating response: {str(e)}")
|
121 |
break
|
122 |
-
|
123 |
return full_response.strip()
|
124 |
|
125 |
def manage_conversation_history(question, answer, history, max_history=5):
|
@@ -197,10 +186,8 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
197 |
print(f"Found {len(result_block)} results on this page")
|
198 |
for result in result_block:
|
199 |
link = result.find("a", href=True)
|
200 |
-
|
201 |
-
if link and title:
|
202 |
link = link["href"]
|
203 |
-
title = title.get_text()
|
204 |
print(f"Processing link: {link}")
|
205 |
try:
|
206 |
webpage = session.get(link, headers=headers, timeout=timeout)
|
@@ -208,21 +195,20 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
208 |
visible_text = extract_text_from_webpage(webpage.text)
|
209 |
if len(visible_text) > max_chars_per_page:
|
210 |
visible_text = visible_text[:max_chars_per_page] + "..."
|
211 |
-
all_results.append({"link": link, "
|
212 |
print(f"Successfully extracted text from {link}")
|
213 |
except requests.exceptions.RequestException as e:
|
214 |
print(f"Error retrieving webpage content: {e}")
|
215 |
-
all_results.append({"link": link, "
|
216 |
else:
|
217 |
-
print("No link
|
218 |
-
all_results.append({"link": None, "
|
219 |
start += len(result_block)
|
220 |
|
221 |
print(f"Search completed. Total results: {len(all_results)}")
|
222 |
print("Search results:")
|
223 |
for i, result in enumerate(all_results, 1):
|
224 |
print(f"Result {i}:")
|
225 |
-
print(f" Title: {result['title']}")
|
226 |
print(f" Link: {result['link']}")
|
227 |
if result['text']:
|
228 |
print(f" Text: {result['text'][:100]}...") # Print first 100 characters
|
@@ -232,61 +218,92 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
232 |
|
233 |
if not all_results:
|
234 |
print("No search results found. Returning a default message.")
|
235 |
-
return [{"link": None, "
|
236 |
|
237 |
return all_results
|
238 |
|
239 |
-
def
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
Summary:
|
249 |
"""
|
250 |
-
|
|
|
|
|
251 |
return summary
|
252 |
|
253 |
-
def
|
254 |
-
|
255 |
-
|
256 |
-
return list(range(1, len(titles) + 1))
|
257 |
-
|
258 |
-
ranking_prompt = (
|
259 |
-
"Rank the following search results from a financial analyst perspective. "
|
260 |
-
f"Assign a rank from 1 to {len(titles)} based on relevance, with 1 being the most relevant. "
|
261 |
-
"Return only the numeric ranks in order, separated by commas.\n\n"
|
262 |
-
"Titles and summaries:\n"
|
263 |
-
)
|
264 |
|
265 |
-
|
266 |
-
|
267 |
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
print(f"Error in ranking: {str(e)}. Using fallback ranking method.")
|
287 |
-
return list(range(1, len(titles) + 1))
|
288 |
|
289 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
global conversation_history
|
291 |
|
292 |
if not question:
|
@@ -295,39 +312,24 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
|
295 |
model = get_model(temperature, top_p, repetition_penalty)
|
296 |
embed = get_embeddings()
|
297 |
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
if web_search:
|
299 |
search_results = google_search(question)
|
|
|
300 |
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
summary = summarize_content(result["text"], model)
|
306 |
-
processed_results.append({
|
307 |
-
"title": result.get("title", f"Result {index}"),
|
308 |
-
"summary": summary,
|
309 |
-
"index": index
|
310 |
-
})
|
311 |
-
except Exception as e:
|
312 |
-
print(f"Error processing search result {index}: {str(e)}")
|
313 |
-
else:
|
314 |
-
print(f"Skipping result {index} due to None content")
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
print(f"Number of processed results: {len(processed_results)}")
|
320 |
-
|
321 |
-
# For news requests, return the summaries directly
|
322 |
-
if "news" in question.lower():
|
323 |
-
news_response = "Here are the latest news summaries on this topic:\n\n"
|
324 |
-
for result in processed_results[:5]: # Limit to top 5 results
|
325 |
-
news_response += f"Title: {result['title']}\n\nSummary: {result['summary']}\n\n---\n\n"
|
326 |
-
return news_response.strip()
|
327 |
-
|
328 |
-
# For other questions, use the summaries as context
|
329 |
-
context_str = "\n\n".join([f"Title: {r['title']}\nSummary: {r['summary']}"
|
330 |
-
for r in processed_results])
|
331 |
|
332 |
prompt_template = """
|
333 |
Answer the question based on the following web search results:
|
@@ -335,17 +337,31 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
|
335 |
{context}
|
336 |
Current Question: {question}
|
337 |
If the web search results don't contain relevant information, state that the information is not available in the search results.
|
338 |
-
Provide a concise and direct answer to the question:
|
339 |
"""
|
340 |
prompt_val = ChatPromptTemplate.from_template(prompt_template)
|
341 |
formatted_prompt = prompt_val.format(context=context_str, question=question)
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
if not os.path.exists("faiss_database"):
|
346 |
-
return "No documents available. Please upload documents or enable web search to answer questions."
|
347 |
|
348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
|
350 |
history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history])
|
351 |
|
@@ -359,9 +375,26 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
|
359 |
prompt_val = ChatPromptTemplate.from_template(prompt)
|
360 |
formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question)
|
361 |
|
362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
-
if not web_search:
|
365 |
memory_database[question] = answer
|
366 |
conversation_history = manage_conversation_history(question, answer, conversation_history)
|
367 |
|
@@ -393,67 +426,6 @@ def update_vectors(files, use_recursive_splitter):
|
|
393 |
|
394 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
|
395 |
|
396 |
-
def update_vector_db_with_search_results(search_results, ranks, current_date):
|
397 |
-
embed = get_embeddings()
|
398 |
-
|
399 |
-
documents = []
|
400 |
-
for result, rank in zip(search_results, ranks):
|
401 |
-
if result.get("summary"):
|
402 |
-
doc = Document(
|
403 |
-
page_content=result["summary"],
|
404 |
-
metadata={
|
405 |
-
"search_date": current_date,
|
406 |
-
"search_title": result.get("title", ""),
|
407 |
-
"search_content": result.get("content", ""),
|
408 |
-
"search_summary": result["summary"],
|
409 |
-
"rank": rank
|
410 |
-
}
|
411 |
-
)
|
412 |
-
documents.append(doc)
|
413 |
-
|
414 |
-
if not documents:
|
415 |
-
print("No valid documents to add to the database.")
|
416 |
-
return
|
417 |
-
|
418 |
-
texts = [doc.page_content for doc in documents]
|
419 |
-
metadatas = [doc.metadata for doc in documents]
|
420 |
-
|
421 |
-
print(f"Number of documents to embed: {len(texts)}")
|
422 |
-
print(f"First document text: {texts[0][:100]}...") # Print first 100 characters of the first document
|
423 |
-
|
424 |
-
try:
|
425 |
-
if os.path.exists("faiss_database"):
|
426 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
427 |
-
database.add_texts(texts, metadatas=metadatas)
|
428 |
-
else:
|
429 |
-
database = FAISS.from_texts(texts, embed, metadatas=metadatas)
|
430 |
-
|
431 |
-
database.save_local("faiss_database")
|
432 |
-
print("Database updated successfully.")
|
433 |
-
except Exception as e:
|
434 |
-
print(f"Error updating database: {str(e)}")
|
435 |
-
|
436 |
-
def export_vector_db_to_excel():
|
437 |
-
embed = get_embeddings()
|
438 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
439 |
-
|
440 |
-
documents = database.docstore._dict.values()
|
441 |
-
data = [{
|
442 |
-
"Search Date": doc.metadata["search_date"],
|
443 |
-
"Search Title": doc.metadata["search_title"],
|
444 |
-
"Search Content": doc.metadata["search_content"],
|
445 |
-
"Search Summary": doc.metadata["search_summary"],
|
446 |
-
"Rank": doc.metadata["rank"]
|
447 |
-
} for doc in documents]
|
448 |
-
|
449 |
-
df = pd.DataFrame(data)
|
450 |
-
|
451 |
-
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
|
452 |
-
excel_path = tmp.name
|
453 |
-
df.to_excel(excel_path, index=False)
|
454 |
-
|
455 |
-
return excel_path
|
456 |
-
|
457 |
def extract_db_to_excel():
|
458 |
embed = get_embeddings()
|
459 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
@@ -485,7 +457,7 @@ def export_memory_db_to_excel():
|
|
485 |
|
486 |
# Gradio interface
|
487 |
with gr.Blocks() as demo:
|
488 |
-
gr.Markdown("# Chat with your PDF documents")
|
489 |
|
490 |
with gr.Row():
|
491 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
@@ -498,34 +470,30 @@ with gr.Blocks() as demo:
|
|
498 |
with gr.Row():
|
499 |
with gr.Column(scale=2):
|
500 |
chatbot = gr.Chatbot(label="Conversation")
|
501 |
-
question_input = gr.Textbox(label="Ask a question about your documents")
|
502 |
submit_button = gr.Button("Submit")
|
503 |
with gr.Column(scale=1):
|
504 |
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
|
505 |
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
|
506 |
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
|
507 |
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)
|
|
|
508 |
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
else:
|
519 |
-
history.append((question, answer))
|
520 |
-
|
521 |
return "", history
|
522 |
|
523 |
-
submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox], outputs=[question_input, chatbot])
|
|
|
|
|
524 |
|
525 |
-
export_vector_db_button = gr.Button("Export Vector DB to Excel")
|
526 |
-
vector_db_excel_output = gr.File(label="Download Vector DB Excel File")
|
527 |
-
export_vector_db_button.click(export_vector_db_to_excel, inputs=[], outputs=vector_db_excel_output)
|
528 |
-
|
529 |
extract_button = gr.Button("Extract Database to Excel")
|
530 |
excel_output = gr.File(label="Download Excel File")
|
531 |
extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output)
|
@@ -534,6 +502,10 @@ with gr.Blocks() as demo:
|
|
534 |
memory_excel_output = gr.File(label="Download Memory Excel File")
|
535 |
export_memory_button.click(export_memory_db_to_excel, inputs=[], outputs=memory_excel_output)
|
536 |
|
|
|
|
|
|
|
|
|
537 |
clear_button = gr.Button("Clear Cache")
|
538 |
clear_output = gr.Textbox(label="Cache Status")
|
539 |
clear_button.click(clear_cache, inputs=[], outputs=clear_output)
|
|
|
20 |
from langchain_core.documents import Document
|
21 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
22 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
|
23 |
|
24 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
25 |
|
26 |
# Memory database to store question-answer pairs
|
27 |
memory_database = {}
|
28 |
conversation_history = []
|
29 |
+
news_database = []
|
30 |
|
31 |
def load_and_split_document_basic(file):
|
32 |
"""Loads and splits the document into pages."""
|
|
|
100 |
huggingfacehub_api_token=huggingface_token
|
101 |
)
|
102 |
|
103 |
+
def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5):
|
104 |
full_response = ""
|
105 |
+
for i in range(max_chunks):
|
106 |
+
chunk = model(prompt + full_response, max_new_tokens=max_tokens)
|
107 |
+
chunk = chunk.strip()
|
108 |
+
if chunk.endswith((".", "!", "?")):
|
|
|
|
|
|
|
|
|
109 |
full_response += chunk
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
break
|
111 |
+
full_response += chunk
|
112 |
return full_response.strip()
|
113 |
|
114 |
def manage_conversation_history(question, answer, history, max_history=5):
|
|
|
186 |
print(f"Found {len(result_block)} results on this page")
|
187 |
for result in result_block:
|
188 |
link = result.find("a", href=True)
|
189 |
+
if link:
|
|
|
190 |
link = link["href"]
|
|
|
191 |
print(f"Processing link: {link}")
|
192 |
try:
|
193 |
webpage = session.get(link, headers=headers, timeout=timeout)
|
|
|
195 |
visible_text = extract_text_from_webpage(webpage.text)
|
196 |
if len(visible_text) > max_chars_per_page:
|
197 |
visible_text = visible_text[:max_chars_per_page] + "..."
|
198 |
+
all_results.append({"link": link, "text": visible_text})
|
199 |
print(f"Successfully extracted text from {link}")
|
200 |
except requests.exceptions.RequestException as e:
|
201 |
print(f"Error retrieving webpage content: {e}")
|
202 |
+
all_results.append({"link": link, "text": None})
|
203 |
else:
|
204 |
+
print("No link found for this result")
|
205 |
+
all_results.append({"link": None, "text": None})
|
206 |
start += len(result_block)
|
207 |
|
208 |
print(f"Search completed. Total results: {len(all_results)}")
|
209 |
print("Search results:")
|
210 |
for i, result in enumerate(all_results, 1):
|
211 |
print(f"Result {i}:")
|
|
|
212 |
print(f" Link: {result['link']}")
|
213 |
if result['text']:
|
214 |
print(f" Text: {result['text'][:100]}...") # Print first 100 characters
|
|
|
218 |
|
219 |
if not all_results:
|
220 |
print("No search results found. Returning a default message.")
|
221 |
+
return [{"link": None, "text": "No information found in the web search results."}]
|
222 |
|
223 |
return all_results
|
224 |
|
225 |
+
def fetch_google_news_rss(query, num_results=10):
|
226 |
+
base_url = "https://news.google.com/rss/search"
|
227 |
+
params = {
|
228 |
+
"q": query,
|
229 |
+
"hl": "en-US",
|
230 |
+
"gl": "US",
|
231 |
+
"ceid": "US:en"
|
232 |
+
}
|
233 |
+
url = f"{base_url}?{urllib.parse.urlencode(params)}"
|
234 |
+
|
235 |
+
feed = feedparser.parse(url)
|
236 |
+
articles = []
|
237 |
+
|
238 |
+
for entry in feed.entries[:num_results]:
|
239 |
+
article = {
|
240 |
+
"published_date": entry.published,
|
241 |
+
"title": entry.title,
|
242 |
+
"url": entry.link,
|
243 |
+
"content": entry.summary
|
244 |
+
}
|
245 |
+
articles.append(article)
|
246 |
+
|
247 |
+
return articles
|
248 |
+
|
249 |
+
def summarize_news_content(content, model):
|
250 |
+
prompt_template = """
|
251 |
+
Summarize the following news article in a concise manner:
|
252 |
+
{content}
|
253 |
+
|
254 |
Summary:
|
255 |
"""
|
256 |
+
prompt = ChatPromptTemplate.from_template(prompt_template)
|
257 |
+
formatted_prompt = prompt.format(content=content)
|
258 |
+
summary = generate_chunked_response(model, formatted_prompt, max_tokens=200)
|
259 |
return summary
|
260 |
|
261 |
+
def process_google_news_rss(query, temperature, top_p, repetition_penalty):
|
262 |
+
model = get_model(temperature, top_p, repetition_penalty)
|
263 |
+
embed = get_embeddings()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
+
articles = fetch_google_news_rss(query)
|
266 |
+
processed_articles = []
|
267 |
|
268 |
+
for article in articles:
|
269 |
+
summary = summarize_news_content(article["content"], model)
|
270 |
+
processed_article = {
|
271 |
+
"published_date": article["published_date"],
|
272 |
+
"title": article["title"],
|
273 |
+
"url": article["url"],
|
274 |
+
"content": article["content"],
|
275 |
+
"summary": summary
|
276 |
+
}
|
277 |
+
processed_articles.append(processed_article)
|
278 |
|
279 |
+
# Add processed articles to the database
|
280 |
+
docs = [Document(page_content=article["summary"], metadata={"url": article["url"], "title": article["title"], "published_date": article["published_date"]}) for article in processed_articles]
|
281 |
+
|
282 |
+
if os.path.exists("faiss_database"):
|
283 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
284 |
+
database.add_documents(docs)
|
285 |
+
else:
|
286 |
+
database = FAISS.from_documents(docs, embed)
|
287 |
+
|
288 |
+
database.save_local("faiss_database")
|
289 |
+
|
290 |
+
# Update news_database for excel export
|
291 |
+
global news_database
|
292 |
+
news_database.extend(processed_articles)
|
293 |
+
|
294 |
+
return f"Processed and added {len(processed_articles)} news articles to the database."
|
|
|
|
|
295 |
|
296 |
+
def export_news_to_excel():
|
297 |
+
global news_database
|
298 |
+
df = pd.DataFrame(news_database)
|
299 |
+
|
300 |
+
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
|
301 |
+
excel_path = tmp.name
|
302 |
+
df.to_excel(excel_path, index=False)
|
303 |
+
|
304 |
+
return excel_path
|
305 |
+
|
306 |
+
def ask_question(question, temperature, top_p, repetition_penalty, web_search, google_news_rss):
|
307 |
global conversation_history
|
308 |
|
309 |
if not question:
|
|
|
312 |
model = get_model(temperature, top_p, repetition_penalty)
|
313 |
embed = get_embeddings()
|
314 |
|
315 |
+
# Check if the FAISS database exists
|
316 |
+
if os.path.exists("faiss_database"):
|
317 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
318 |
+
else:
|
319 |
+
database = None
|
320 |
+
|
321 |
if web_search:
|
322 |
search_results = google_search(question)
|
323 |
+
web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]]
|
324 |
|
325 |
+
if database is None:
|
326 |
+
database = FAISS.from_documents(web_docs, embed)
|
327 |
+
else:
|
328 |
+
database.add_documents(web_docs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
+
database.save_local("faiss_database")
|
331 |
+
|
332 |
+
context_str = "\n".join([doc.page_content for doc in web_docs])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
prompt_template = """
|
335 |
Answer the question based on the following web search results:
|
|
|
337 |
{context}
|
338 |
Current Question: {question}
|
339 |
If the web search results don't contain relevant information, state that the information is not available in the search results.
|
340 |
+
Provide a concise and direct answer to the question without mentioning the web search or these instructions:
|
341 |
"""
|
342 |
prompt_val = ChatPromptTemplate.from_template(prompt_template)
|
343 |
formatted_prompt = prompt_val.format(context=context_str, question=question)
|
344 |
+
elif google_news_rss:
|
345 |
+
if database is None:
|
346 |
+
return "No news articles available. Please fetch news articles first."
|
|
|
|
|
347 |
|
348 |
+
retriever = database.as_retriever()
|
349 |
+
relevant_docs = retriever.get_relevant_documents(question)
|
350 |
+
context_str = "\n".join([f"Title: {doc.metadata['title']}\nURL: {doc.metadata['url']}\nSummary: {doc.page_content}" for doc in relevant_docs])
|
351 |
+
|
352 |
+
prompt_template = """
|
353 |
+
Answer the question based on the following news summaries:
|
354 |
+
News Summaries:
|
355 |
+
{context}
|
356 |
+
Current Question: {question}
|
357 |
+
If the news summaries don't contain relevant information, state that the information is not available in the news articles.
|
358 |
+
Provide a concise and direct answer to the question without mentioning the news summaries or these instructions:
|
359 |
+
"""
|
360 |
+
prompt_val = ChatPromptTemplate.from_template(prompt_template)
|
361 |
+
formatted_prompt = prompt_val.format(context=context_str, question=question)
|
362 |
+
else:
|
363 |
+
if database is None:
|
364 |
+
return "No documents available. Please upload documents, enable web search, or fetch news articles to answer questions."
|
365 |
|
366 |
history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history])
|
367 |
|
|
|
375 |
prompt_val = ChatPromptTemplate.from_template(prompt)
|
376 |
formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question)
|
377 |
|
378 |
+
full_response = generate_chunked_response(model, formatted_prompt)
|
379 |
+
|
380 |
+
# Extract only the part after the last occurrence of a prompt-like sentence
|
381 |
+
answer_patterns = [
|
382 |
+
r"Provide a concise and direct answer to the question without mentioning the web search or these instructions:",
|
383 |
+
r"Provide a concise and direct answer to the question without mentioning the news summaries or these instructions:",
|
384 |
+
r"Provide a concise and direct answer to the question:",
|
385 |
+
r"Answer:"
|
386 |
+
]
|
387 |
+
|
388 |
+
for pattern in answer_patterns:
|
389 |
+
match = re.split(pattern, full_response, flags=re.IGNORECASE)
|
390 |
+
if len(match) > 1:
|
391 |
+
answer = match[-1].strip()
|
392 |
+
break
|
393 |
+
else:
|
394 |
+
# If no pattern is found, return the full response
|
395 |
+
answer = full_response.strip()
|
396 |
|
397 |
+
if not web_search and not google_news_rss:
|
398 |
memory_database[question] = answer
|
399 |
conversation_history = manage_conversation_history(question, answer, conversation_history)
|
400 |
|
|
|
426 |
|
427 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
|
428 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
def extract_db_to_excel():
|
430 |
embed = get_embeddings()
|
431 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
|
|
457 |
|
458 |
# Gradio interface
|
459 |
with gr.Blocks() as demo:
|
460 |
+
gr.Markdown("# Chat with your PDF documents and News")
|
461 |
|
462 |
with gr.Row():
|
463 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
|
|
470 |
with gr.Row():
|
471 |
with gr.Column(scale=2):
|
472 |
chatbot = gr.Chatbot(label="Conversation")
|
473 |
+
question_input = gr.Textbox(label="Ask a question about your documents or news")
|
474 |
submit_button = gr.Button("Submit")
|
475 |
with gr.Column(scale=1):
|
476 |
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
|
477 |
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
|
478 |
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
|
479 |
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)
|
480 |
+
google_news_rss_checkbox = gr.Checkbox(label="Google News RSS", value=False)
|
481 |
|
482 |
+
with gr.Row():
|
483 |
+
news_query_input = gr.Textbox(label="Enter news query")
|
484 |
+
fetch_news_button = gr.Button("Fetch News")
|
485 |
+
|
486 |
+
news_fetch_output = gr.Textbox(label="News Fetch Status")
|
487 |
+
|
488 |
+
def chat(question, history, temperature, top_p, repetition_penalty, web_search, google_news_rss):
|
489 |
+
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search, google_news_rss)
|
490 |
+
history.append((question, answer))
|
|
|
|
|
|
|
491 |
return "", history
|
492 |
|
493 |
+
submit_button.click(chat, inputs=[question_input, chatbot, temperature_slider, top_p_slider, repetition_penalty_slider, web_search_checkbox, google_news_rss_checkbox], outputs=[question_input, chatbot])
|
494 |
+
|
495 |
+
fetch_news_button.click(process_google_news_rss, inputs=[news_query_input, temperature_slider, top_p_slider, repetition_penalty_slider], outputs=news_fetch_output)
|
496 |
|
|
|
|
|
|
|
|
|
497 |
extract_button = gr.Button("Extract Database to Excel")
|
498 |
excel_output = gr.File(label="Download Excel File")
|
499 |
extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output)
|
|
|
502 |
memory_excel_output = gr.File(label="Download Memory Excel File")
|
503 |
export_memory_button.click(export_memory_db_to_excel, inputs=[], outputs=memory_excel_output)
|
504 |
|
505 |
+
export_news_button = gr.Button("Download News Excel File")
|
506 |
+
news_excel_output = gr.File(label="Download News Excel File")
|
507 |
+
export_news_button.click(export_news_to_excel, inputs=[], outputs=news_excel_output)
|
508 |
+
|
509 |
clear_button = gr.Button("Clear Cache")
|
510 |
clear_output = gr.Textbox(label="Cache Status")
|
511 |
clear_button.click(clear_cache, inputs=[], outputs=clear_output)
|