Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -66,29 +66,6 @@ def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[
|
|
66 |
def get_embeddings():
|
67 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
|
68 |
|
69 |
-
def scan_faiss_database():
|
70 |
-
global uploaded_documents
|
71 |
-
uploaded_documents = []
|
72 |
-
|
73 |
-
if os.path.exists("faiss_database"):
|
74 |
-
embed = get_embeddings()
|
75 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
76 |
-
|
77 |
-
for doc in database.docstore._dict.values():
|
78 |
-
file_name = os.path.basename(doc.metadata['source'])
|
79 |
-
if not any(d['name'] == file_name for d in uploaded_documents):
|
80 |
-
uploaded_documents.append({"name": file_name, "selected": True})
|
81 |
-
|
82 |
-
return uploaded_documents
|
83 |
-
|
84 |
-
# Call this function when the application starts
|
85 |
-
uploaded_documents = scan_faiss_database()
|
86 |
-
|
87 |
-
def initialize_session():
|
88 |
-
global uploaded_documents
|
89 |
-
uploaded_documents = scan_faiss_database()
|
90 |
-
return uploaded_documents
|
91 |
-
|
92 |
def update_vectors(files, parser):
|
93 |
global uploaded_documents
|
94 |
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
|
@@ -112,12 +89,12 @@ def update_vectors(files, parser):
|
|
112 |
logging.info(f"Loaded {len(data)} chunks from {file.name}")
|
113 |
all_data.extend(data)
|
114 |
total_chunks += len(data)
|
115 |
-
|
116 |
-
if not any(doc["name"] ==
|
117 |
-
uploaded_documents.append({"name":
|
118 |
-
logging.info(f"Added new document to uploaded_documents: {
|
119 |
else:
|
120 |
-
logging.info(f"Document already exists in uploaded_documents: {
|
121 |
except Exception as e:
|
122 |
logging.error(f"Error processing file {file.name}: {str(e)}")
|
123 |
|
@@ -133,6 +110,7 @@ def update_vectors(files, parser):
|
|
133 |
|
134 |
database.save_local("faiss_database")
|
135 |
logging.info("FAISS database saved")
|
|
|
136 |
|
137 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
|
138 |
choices=[doc["name"] for doc in uploaded_documents],
|
@@ -240,14 +218,14 @@ class CitingSources(BaseModel):
|
|
240 |
...,
|
241 |
description="List of sources to cite. Should be an URL of the source."
|
242 |
)
|
243 |
-
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls
|
244 |
if not message.strip():
|
245 |
return "", history
|
246 |
|
247 |
history = history + [(message, "")]
|
248 |
|
249 |
try:
|
250 |
-
for response in respond(message, history, model, temperature, num_calls, use_web_search
|
251 |
history[-1] = (message, response)
|
252 |
yield history
|
253 |
except gr.CancelledError:
|
@@ -270,12 +248,15 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
|
|
270 |
logging.info(f"User Query: {message}")
|
271 |
logging.info(f"Model Used: {model}")
|
272 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
|
|
273 |
logging.info(f"Selected Documents: {selected_docs}")
|
274 |
|
275 |
try:
|
276 |
if use_web_search:
|
277 |
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
278 |
response = f"{main_content}\n\n{sources}"
|
|
|
|
|
279 |
yield response
|
280 |
else:
|
281 |
embed = get_embeddings()
|
@@ -283,8 +264,9 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
|
|
283 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
284 |
retriever = database.as_retriever()
|
285 |
|
|
|
286 |
all_relevant_docs = retriever.get_relevant_documents(message)
|
287 |
-
relevant_docs = [doc for doc in all_relevant_docs if
|
288 |
|
289 |
if not relevant_docs:
|
290 |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
@@ -299,10 +281,14 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
|
|
299 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
300 |
# Use Cloudflare API
|
301 |
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
|
|
|
|
302 |
yield partial_response
|
303 |
else:
|
304 |
# Use Hugging Face API
|
305 |
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
|
|
|
|
306 |
yield partial_response
|
307 |
except Exception as e:
|
308 |
logging.error(f"Error with {model}: {str(e)}")
|
@@ -555,9 +541,7 @@ demo = gr.ChatInterface(
|
|
555 |
)
|
556 |
|
557 |
# Add file upload functionality
|
558 |
-
with
|
559 |
-
session_documents = gr.State(initialize_session)
|
560 |
-
|
561 |
gr.Markdown("## Upload PDF Documents")
|
562 |
|
563 |
with gr.Row():
|
@@ -566,29 +550,11 @@ with gr.Blocks() as demo:
|
|
566 |
update_button = gr.Button("Upload Document")
|
567 |
|
568 |
update_output = gr.Textbox(label="Update Status")
|
569 |
-
document_selector = gr.CheckboxGroup(
|
570 |
-
choices=[doc["name"] for doc in uploaded_documents],
|
571 |
-
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
572 |
-
label="Select documents to query"
|
573 |
-
)
|
574 |
|
575 |
# Update both the output text and the document selector
|
576 |
-
update_button.click(
|
577 |
-
|
578 |
-
|
579 |
-
outputs=[update_output, document_selector]
|
580 |
-
)
|
581 |
-
|
582 |
-
# Add a refresh button to update the document selector
|
583 |
-
refresh_button = gr.Button("Refresh Document List")
|
584 |
-
refresh_button.click(
|
585 |
-
lambda: gr.CheckboxGroup(
|
586 |
-
choices=[doc["name"] for doc in uploaded_documents],
|
587 |
-
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
588 |
-
label="Select documents to query"
|
589 |
-
),
|
590 |
-
outputs=[document_selector]
|
591 |
-
)
|
592 |
|
593 |
gr.Markdown(
|
594 |
"""
|
|
|
66 |
def get_embeddings():
|
67 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def update_vectors(files, parser):
|
70 |
global uploaded_documents
|
71 |
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
|
|
|
89 |
logging.info(f"Loaded {len(data)} chunks from {file.name}")
|
90 |
all_data.extend(data)
|
91 |
total_chunks += len(data)
|
92 |
+
# Append new documents instead of replacing
|
93 |
+
if not any(doc["name"] == file.name for doc in uploaded_documents):
|
94 |
+
uploaded_documents.append({"name": file.name, "selected": True})
|
95 |
+
logging.info(f"Added new document to uploaded_documents: {file.name}")
|
96 |
else:
|
97 |
+
logging.info(f"Document already exists in uploaded_documents: {file.name}")
|
98 |
except Exception as e:
|
99 |
logging.error(f"Error processing file {file.name}: {str(e)}")
|
100 |
|
|
|
110 |
|
111 |
database.save_local("faiss_database")
|
112 |
logging.info("FAISS database saved")
|
113 |
+
|
114 |
|
115 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
|
116 |
choices=[doc["name"] for doc in uploaded_documents],
|
|
|
218 |
...,
|
219 |
description="List of sources to cite. Should be an URL of the source."
|
220 |
)
|
221 |
+
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls):
|
222 |
if not message.strip():
|
223 |
return "", history
|
224 |
|
225 |
history = history + [(message, "")]
|
226 |
|
227 |
try:
|
228 |
+
for response in respond(message, history, model, temperature, num_calls, use_web_search):
|
229 |
history[-1] = (message, response)
|
230 |
yield history
|
231 |
except gr.CancelledError:
|
|
|
248 |
logging.info(f"User Query: {message}")
|
249 |
logging.info(f"Model Used: {model}")
|
250 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
251 |
+
|
252 |
logging.info(f"Selected Documents: {selected_docs}")
|
253 |
|
254 |
try:
|
255 |
if use_web_search:
|
256 |
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
257 |
response = f"{main_content}\n\n{sources}"
|
258 |
+
first_line = response.split('\n')[0] if response else ''
|
259 |
+
# logging.info(f"Generated Response (first line): {first_line}")
|
260 |
yield response
|
261 |
else:
|
262 |
embed = get_embeddings()
|
|
|
264 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
265 |
retriever = database.as_retriever()
|
266 |
|
267 |
+
# Filter relevant documents based on user selection
|
268 |
all_relevant_docs = retriever.get_relevant_documents(message)
|
269 |
+
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
270 |
|
271 |
if not relevant_docs:
|
272 |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
|
|
281 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
282 |
# Use Cloudflare API
|
283 |
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
284 |
+
first_line = partial_response.split('\n')[0] if partial_response else ''
|
285 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
286 |
yield partial_response
|
287 |
else:
|
288 |
# Use Hugging Face API
|
289 |
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
290 |
+
first_line = partial_response.split('\n')[0] if partial_response else ''
|
291 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
292 |
yield partial_response
|
293 |
except Exception as e:
|
294 |
logging.error(f"Error with {model}: {str(e)}")
|
|
|
541 |
)
|
542 |
|
543 |
# Add file upload functionality
|
544 |
+
with demo:
|
|
|
|
|
545 |
gr.Markdown("## Upload PDF Documents")
|
546 |
|
547 |
with gr.Row():
|
|
|
550 |
update_button = gr.Button("Upload Document")
|
551 |
|
552 |
update_output = gr.Textbox(label="Update Status")
|
|
|
|
|
|
|
|
|
|
|
553 |
|
554 |
# Update both the output text and the document selector
|
555 |
+
update_button.click(update_vectors,
|
556 |
+
inputs=[file_input, parser_dropdown],
|
557 |
+
outputs=[update_output, document_selector])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
558 |
|
559 |
gr.Markdown(
|
560 |
"""
|