Spaces:
Paused
Paused
Shreyas094
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -29,33 +29,41 @@ from langchain_core.documents import Document
|
|
29 |
|
30 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
self.history = []
|
38 |
self.history_size = history_size
|
39 |
-
self.
|
40 |
-
nltk.download('punkt', quiet=True)
|
41 |
-
nltk.download('averaged_perceptron_tagger', quiet=True)
|
42 |
|
43 |
def add_to_history(self, text):
|
44 |
self.history.append(text)
|
45 |
if len(self.history) > self.history_size:
|
46 |
self.history.pop(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
def get_context(self):
|
49 |
return " ".join(self.history)
|
50 |
|
51 |
def is_follow_up_question(self, question):
|
52 |
-
|
53 |
follow_up_indicators = set(['it', 'this', 'that', 'these', 'those', 'he', 'she', 'they', 'them'])
|
54 |
-
return any(token in follow_up_indicators for token in
|
55 |
|
56 |
def extract_topics(self, text):
|
57 |
-
|
58 |
-
return [
|
59 |
|
60 |
def get_most_relevant_context(self, question):
|
61 |
if not self.history:
|
@@ -64,11 +72,12 @@ class ContextDrivenChatbot:
|
|
64 |
# Create a combined context from history
|
65 |
combined_context = self.get_context()
|
66 |
|
67 |
-
#
|
68 |
-
|
|
|
69 |
|
70 |
# Calculate similarity
|
71 |
-
similarity = cosine_similarity(
|
72 |
|
73 |
# If similarity is low, it might be a new topic
|
74 |
if similarity < 0.3: # This threshold can be adjusted
|
@@ -91,7 +100,7 @@ class ContextDrivenChatbot:
|
|
91 |
# Add the new question to history
|
92 |
self.add_to_history(question)
|
93 |
|
94 |
-
return contextualized_question, topics
|
95 |
|
96 |
def load_document(file: NamedTemporaryFile) -> List[Document]:
|
97 |
"""Loads and splits the document into pages."""
|
@@ -262,7 +271,7 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search, c
|
|
262 |
max_attempts = 3
|
263 |
context_reduction_factor = 0.7
|
264 |
|
265 |
-
contextualized_question, topics = chatbot.process_question(question)
|
266 |
|
267 |
if web_search:
|
268 |
search_results = google_search(contextualized_question)
|
@@ -282,12 +291,13 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search, c
|
|
282 |
context_str = "\n".join([f"Source: {doc.metadata['source']}\nContent: {doc.page_content}" for doc in web_docs])
|
283 |
|
284 |
prompt_template = """
|
285 |
-
Answer the question based on the following web search results and
|
286 |
Web Search Results:
|
287 |
{context}
|
288 |
Conversation Context: {conv_context}
|
289 |
Current Question: {question}
|
290 |
Topics: {topics}
|
|
|
291 |
If the web search results don't contain relevant information, state that the information is not available in the search results.
|
292 |
Provide a summarized and direct answer to the question without mentioning the web search or these instructions.
|
293 |
Do not include any source information in your answer.
|
@@ -298,7 +308,8 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search, c
|
|
298 |
context=context_str,
|
299 |
conv_context=chatbot.get_context(),
|
300 |
question=question,
|
301 |
-
topics=", ".join(topics)
|
|
|
302 |
)
|
303 |
|
304 |
full_response = generate_chunked_response(model, formatted_prompt)
|
@@ -415,7 +426,7 @@ with gr.Blocks() as demo:
|
|
415 |
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
|
416 |
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)
|
417 |
|
418 |
-
context_driven_chatbot =
|
419 |
|
420 |
def chat(question, history, temperature, top_p, repetition_penalty, web_search):
|
421 |
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search, context_driven_chatbot)
|
|
|
29 |
|
30 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
31 |
|
32 |
+
# Load spaCy model
|
33 |
+
nlp = spacy.load("en_core_web_sm")
|
34 |
+
|
35 |
+
# Load SentenceTransformer model
|
36 |
+
sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
37 |
+
|
38 |
+
class EnhancedContextDrivenChatbot:
|
39 |
+
def __init__(self, history_size=10):
|
40 |
self.history = []
|
41 |
self.history_size = history_size
|
42 |
+
self.entity_tracker = {}
|
|
|
|
|
43 |
|
44 |
def add_to_history(self, text):
|
45 |
self.history.append(text)
|
46 |
if len(self.history) > self.history_size:
|
47 |
self.history.pop(0)
|
48 |
+
|
49 |
+
# Update entity tracker
|
50 |
+
doc = nlp(text)
|
51 |
+
for ent in doc.ents:
|
52 |
+
if ent.label_ not in self.entity_tracker:
|
53 |
+
self.entity_tracker[ent.label_] = set()
|
54 |
+
self.entity_tracker[ent.label_].add(ent.text)
|
55 |
|
56 |
def get_context(self):
|
57 |
return " ".join(self.history)
|
58 |
|
59 |
def is_follow_up_question(self, question):
|
60 |
+
doc = nlp(question.lower())
|
61 |
follow_up_indicators = set(['it', 'this', 'that', 'these', 'those', 'he', 'she', 'they', 'them'])
|
62 |
+
return any(token.text in follow_up_indicators for token in doc)
|
63 |
|
64 |
def extract_topics(self, text):
|
65 |
+
doc = nlp(text)
|
66 |
+
return [chunk.text for chunk in doc.noun_chunks]
|
67 |
|
68 |
def get_most_relevant_context(self, question):
|
69 |
if not self.history:
|
|
|
72 |
# Create a combined context from history
|
73 |
combined_context = self.get_context()
|
74 |
|
75 |
+
# Get embeddings
|
76 |
+
context_embedding = sentence_model.encode([combined_context])[0]
|
77 |
+
question_embedding = sentence_model.encode([question])[0]
|
78 |
|
79 |
# Calculate similarity
|
80 |
+
similarity = cosine_similarity([context_embedding], [question_embedding])[0][0]
|
81 |
|
82 |
# If similarity is low, it might be a new topic
|
83 |
if similarity < 0.3: # This threshold can be adjusted
|
|
|
100 |
# Add the new question to history
|
101 |
self.add_to_history(question)
|
102 |
|
103 |
+
return contextualized_question, topics, self.entity_tracker
|
104 |
|
105 |
def load_document(file: NamedTemporaryFile) -> List[Document]:
|
106 |
"""Loads and splits the document into pages."""
|
|
|
271 |
max_attempts = 3
|
272 |
context_reduction_factor = 0.7
|
273 |
|
274 |
+
contextualized_question, topics, entity_tracker = chatbot.process_question(question)
|
275 |
|
276 |
if web_search:
|
277 |
search_results = google_search(contextualized_question)
|
|
|
291 |
context_str = "\n".join([f"Source: {doc.metadata['source']}\nContent: {doc.page_content}" for doc in web_docs])
|
292 |
|
293 |
prompt_template = """
|
294 |
+
Answer the question based on the following web search results, conversation context, and entity information:
|
295 |
Web Search Results:
|
296 |
{context}
|
297 |
Conversation Context: {conv_context}
|
298 |
Current Question: {question}
|
299 |
Topics: {topics}
|
300 |
+
Entity Information: {entities}
|
301 |
If the web search results don't contain relevant information, state that the information is not available in the search results.
|
302 |
Provide a summarized and direct answer to the question without mentioning the web search or these instructions.
|
303 |
Do not include any source information in your answer.
|
|
|
308 |
context=context_str,
|
309 |
conv_context=chatbot.get_context(),
|
310 |
question=question,
|
311 |
+
topics=", ".join(topics),
|
312 |
+
entities=json.dumps(entity_tracker)
|
313 |
)
|
314 |
|
315 |
full_response = generate_chunked_response(model, formatted_prompt)
|
|
|
426 |
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
|
427 |
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)
|
428 |
|
429 |
+
context_driven_chatbot = EnhancedContextDrivenChatbot()
|
430 |
|
431 |
def chat(question, history, temperature, top_p, repetition_penalty, web_search):
|
432 |
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search, context_driven_chatbot)
|