Shreyas094 commited on
Commit
753d9d8
·
verified ·
1 Parent(s): a65ba38

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -52
app.py CHANGED
@@ -1,69 +1,30 @@
1
- import os
2
- import torch
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
- from huggingface_hub import login
5
- import time
6
- import torch.quantization
7
-
8
- # Directly assign your Hugging Face token here
9
- hf_token = "your_hugging_face_api_token"
10
-
11
- # Log in to Hugging Face
12
- login(token=hf_token)
13
-
14
- # Load the Mixtral-8x7B-Instruct model and tokenizer with authorization header
15
- model_name = 'mistralai/Mistral-7B-Instruct-v0.3'
16
- headers = {"Authorization": f"Bearer {hf_token}"}
17
-
18
- # Ensure sentencepiece is installed
19
- try:
20
- import sentencepiece
21
- except ImportError:
22
- raise ImportError("The sentencepiece library is required for this tokenizer. Please install it with `pip install sentencepiece`.")
23
 
24
- # Start time to measure execution time
25
- start_time = time.time()
26
 
27
- # Load tokenizer and model
28
- tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
29
- model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
30
 
31
- # Quantize the model
32
- quantized_model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
33
 
34
- # Check if a GPU is available and if not, fall back to CPU
35
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
36
  quantized_model.to(device)
37
 
38
- # Measure time for loading tokenizer, model, and quantization
39
- loading_time = time.time() - start_time
40
- print(f"Time taken to load tokenizer, model, and quantize: {loading_time:.2f} seconds")
41
-
42
  # Example text input
43
  text_input = "How did Tesla perform in Q1 2024?"
44
 
45
- # Start time for inference
46
- inference_start_time = time.time()
47
-
48
- # Tokenize the input text
49
  inputs = tokenizer(text_input, return_tensors="pt").to(device)
50
 
51
- # Measure time for tokenization
52
- tokenization_time = time.time() - inference_start_time
53
-
54
- # Generate a response
55
  outputs = quantized_model.generate(**inputs, max_length=150, do_sample=False)
56
 
57
- # Measure time for inference
58
- inference_time = time.time() - inference_start_time
59
- print(f"Time taken for inference with quantized model: {inference_time:.2f} seconds")
60
-
61
- # Decode the generated tokens to a readable string
62
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
63
 
64
- # Print the response
65
- print(f"Generated response: {response}")
66
-
67
- # Total execution time
68
- total_time = time.time() - start_time
69
- print(f"Total execution time with quantized model: {total_time:.2f} seconds")
 
 
 
1
  from transformers import AutoTokenizer, AutoModelForCausalLM
2
+ import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ # Path to the locally saved quantized model directory
5
+ model_path = '/path/to/your/quantized_model_directory'
6
 
7
+ # Load tokenizer
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
 
9
 
10
+ # Load quantized model
11
+ quantized_model = AutoModelForCausalLM.from_pretrained(model_path)
12
 
13
+ # Check if a GPU is available and move model to GPU if available
14
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
  quantized_model.to(device)
16
 
 
 
 
 
17
  # Example text input
18
  text_input = "How did Tesla perform in Q1 2024?"
19
 
20
+ # Tokenize input
 
 
 
21
  inputs = tokenizer(text_input, return_tensors="pt").to(device)
22
 
23
+ # Generate response
 
 
 
24
  outputs = quantized_model.generate(**inputs, max_length=150, do_sample=False)
25
 
26
+ # Decode generated tokens to readable string
 
 
 
 
27
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
28
 
29
+ # Print generated response
30
+ print(f"Generated response: {response}")