Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,30 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
-
|
5 |
-
import time
|
6 |
-
import torch.quantization
|
7 |
-
|
8 |
-
# Directly assign your Hugging Face token here
|
9 |
-
hf_token = "your_hugging_face_api_token"
|
10 |
-
|
11 |
-
# Log in to Hugging Face
|
12 |
-
login(token=hf_token)
|
13 |
-
|
14 |
-
# Load the Mixtral-8x7B-Instruct model and tokenizer with authorization header
|
15 |
-
model_name = 'mistralai/Mistral-7B-Instruct-v0.3'
|
16 |
-
headers = {"Authorization": f"Bearer {hf_token}"}
|
17 |
-
|
18 |
-
# Ensure sentencepiece is installed
|
19 |
-
try:
|
20 |
-
import sentencepiece
|
21 |
-
except ImportError:
|
22 |
-
raise ImportError("The sentencepiece library is required for this tokenizer. Please install it with `pip install sentencepiece`.")
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
|
27 |
-
# Load tokenizer
|
28 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name
|
29 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
|
30 |
|
31 |
-
#
|
32 |
-
quantized_model =
|
33 |
|
34 |
-
# Check if a GPU is available and
|
35 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
quantized_model.to(device)
|
37 |
|
38 |
-
# Measure time for loading tokenizer, model, and quantization
|
39 |
-
loading_time = time.time() - start_time
|
40 |
-
print(f"Time taken to load tokenizer, model, and quantize: {loading_time:.2f} seconds")
|
41 |
-
|
42 |
# Example text input
|
43 |
text_input = "How did Tesla perform in Q1 2024?"
|
44 |
|
45 |
-
#
|
46 |
-
inference_start_time = time.time()
|
47 |
-
|
48 |
-
# Tokenize the input text
|
49 |
inputs = tokenizer(text_input, return_tensors="pt").to(device)
|
50 |
|
51 |
-
#
|
52 |
-
tokenization_time = time.time() - inference_start_time
|
53 |
-
|
54 |
-
# Generate a response
|
55 |
outputs = quantized_model.generate(**inputs, max_length=150, do_sample=False)
|
56 |
|
57 |
-
#
|
58 |
-
inference_time = time.time() - inference_start_time
|
59 |
-
print(f"Time taken for inference with quantized model: {inference_time:.2f} seconds")
|
60 |
-
|
61 |
-
# Decode the generated tokens to a readable string
|
62 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
63 |
|
64 |
-
# Print
|
65 |
-
print(f"Generated response: {response}")
|
66 |
-
|
67 |
-
# Total execution time
|
68 |
-
total_time = time.time() - start_time
|
69 |
-
print(f"Total execution time with quantized model: {total_time:.2f} seconds")
|
|
|
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# Path to the locally saved quantized model directory
|
5 |
+
model_path = '/path/to/your/quantized_model_directory'
|
6 |
|
7 |
+
# Load tokenizer
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
9 |
|
10 |
+
# Load quantized model
|
11 |
+
quantized_model = AutoModelForCausalLM.from_pretrained(model_path)
|
12 |
|
13 |
+
# Check if a GPU is available and move model to GPU if available
|
14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
quantized_model.to(device)
|
16 |
|
|
|
|
|
|
|
|
|
17 |
# Example text input
|
18 |
text_input = "How did Tesla perform in Q1 2024?"
|
19 |
|
20 |
+
# Tokenize input
|
|
|
|
|
|
|
21 |
inputs = tokenizer(text_input, return_tensors="pt").to(device)
|
22 |
|
23 |
+
# Generate response
|
|
|
|
|
|
|
24 |
outputs = quantized_model.generate(**inputs, max_length=150, do_sample=False)
|
25 |
|
26 |
+
# Decode generated tokens to readable string
|
|
|
|
|
|
|
|
|
27 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
|
29 |
+
# Print generated response
|
30 |
+
print(f"Generated response: {response}")
|
|
|
|
|
|
|
|