Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import re
|
|
4 |
import gradio as gr
|
5 |
import requests
|
6 |
from duckduckgo_search import DDGS
|
7 |
-
from typing import List
|
8 |
from pydantic import BaseModel, Field
|
9 |
from tempfile import NamedTemporaryFile
|
10 |
from langchain_community.vectorstores import FAISS
|
@@ -13,7 +13,6 @@ from langchain_core.documents import Document
|
|
13 |
from langchain_community.document_loaders import PyPDFLoader
|
14 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
15 |
from llama_parse import LlamaParse
|
16 |
-
from langchain_core.documents import Document
|
17 |
from huggingface_hub import InferenceClient
|
18 |
import inspect
|
19 |
import logging
|
@@ -37,7 +36,11 @@ MODELS = [
|
|
37 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
38 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
39 |
"@cf/meta/llama-3.1-8b-instruct",
|
40 |
-
"mistralai/Mistral-Nemo-Instruct-2407"
|
|
|
|
|
|
|
|
|
41 |
]
|
42 |
|
43 |
# Initialize LlamaParse
|
@@ -271,24 +274,14 @@ def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temp
|
|
271 |
print(f"Final clean response: {final_response[:100]}...")
|
272 |
return final_response
|
273 |
|
274 |
-
def
|
275 |
-
with DDGS() as ddgs:
|
276 |
-
results = ddgs.text(query, max_results=5)
|
277 |
-
return results
|
278 |
-
|
279 |
-
class CitingSources(BaseModel):
|
280 |
-
sources: List[str] = Field(
|
281 |
-
...,
|
282 |
-
description="List of sources to cite. Should be an URL of the source."
|
283 |
-
)
|
284 |
-
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls):
|
285 |
if not message.strip():
|
286 |
return "", history
|
287 |
|
288 |
history = history + [(message, "")]
|
289 |
|
290 |
try:
|
291 |
-
for response in respond(message, history, model, temperature, num_calls
|
292 |
history[-1] = (message, response)
|
293 |
yield history
|
294 |
except gr.CancelledError:
|
@@ -298,36 +291,145 @@ def chatbot_interface(message, history, use_web_search, model, temperature, num_
|
|
298 |
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
299 |
yield history
|
300 |
|
301 |
-
def retry_last_response(history,
|
302 |
if not history:
|
303 |
return history
|
304 |
|
305 |
last_user_msg = history[-1][0]
|
306 |
history = history[:-1] # Remove the last response
|
307 |
|
308 |
-
return chatbot_interface(last_user_msg, history,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
logging.info(f"User Query: {message}")
|
312 |
logging.info(f"Model Used: {model}")
|
313 |
-
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
314 |
-
|
315 |
logging.info(f"Selected Documents: {selected_docs}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
response = f"{main_content}\n\n{sources}"
|
321 |
-
first_line = response.split('\n')[0] if response else ''
|
322 |
-
# logging.info(f"Generated Response (first line): {first_line}")
|
323 |
-
yield response
|
324 |
else:
|
|
|
|
|
|
|
|
|
325 |
embed = get_embeddings()
|
326 |
if os.path.exists("faiss_database"):
|
327 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
328 |
retriever = database.as_retriever(search_kwargs={"k": 20})
|
329 |
|
330 |
-
# Filter relevant documents based on user selection
|
331 |
all_relevant_docs = retriever.get_relevant_documents(message)
|
332 |
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
333 |
|
@@ -336,6 +438,7 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
|
|
336 |
return
|
337 |
|
338 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
|
|
339 |
else:
|
340 |
context_str = "No documents available."
|
341 |
yield "No documents available. Please upload PDF documents to answer questions."
|
@@ -343,24 +446,20 @@ def respond(message, history, model, temperature, num_calls, use_web_search, sel
|
|
343 |
|
344 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
345 |
# Use Cloudflare API
|
346 |
-
for
|
347 |
-
|
348 |
-
# logging.info(f"Generated Response (first line): {first_line}")
|
349 |
-
yield partial_response
|
350 |
else:
|
351 |
# Use Hugging Face API
|
352 |
-
for
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
else:
|
363 |
-
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
364 |
|
365 |
logging.basicConfig(level=logging.DEBUG)
|
366 |
|
@@ -430,47 +529,6 @@ def create_web_search_vectors(search_results):
|
|
430 |
|
431 |
return FAISS.from_documents(documents, embed)
|
432 |
|
433 |
-
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
|
434 |
-
search_results = duckduckgo_search(query)
|
435 |
-
web_search_database = create_web_search_vectors(search_results)
|
436 |
-
|
437 |
-
if not web_search_database:
|
438 |
-
yield "No web search results available. Please try again.", ""
|
439 |
-
return
|
440 |
-
|
441 |
-
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
|
442 |
-
relevant_docs = retriever.get_relevant_documents(query)
|
443 |
-
|
444 |
-
context = "\n".join([doc.page_content for doc in relevant_docs])
|
445 |
-
|
446 |
-
prompt = f"""Using the following context from web search results:
|
447 |
-
{context}
|
448 |
-
You are an expert AI assistant, write a detailed and complete research document that fulfills the following user request: '{query}'
|
449 |
-
Base your entire response strictly on the information retrieved from trusted sources. Importantly, only include information that is directly supported by the retrieved content.
|
450 |
-
If any part of the information cannot be verified from the given sources, clearly state that it could not be confirmed.
|
451 |
-
After writing the document, please provide a list of sources used in your response."""
|
452 |
-
|
453 |
-
if model == "@cf/meta/llama-3.1-8b-instruct":
|
454 |
-
# Use Cloudflare API
|
455 |
-
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
|
456 |
-
yield response, "" # Yield streaming response without sources
|
457 |
-
else:
|
458 |
-
# Use Hugging Face API
|
459 |
-
client = InferenceClient(model, token=huggingface_token)
|
460 |
-
|
461 |
-
main_content = ""
|
462 |
-
for i in range(num_calls):
|
463 |
-
for message in client.chat_completion(
|
464 |
-
messages=[{"role": "user", "content": prompt}],
|
465 |
-
max_tokens=10000,
|
466 |
-
temperature=temperature,
|
467 |
-
stream=True,
|
468 |
-
):
|
469 |
-
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
470 |
-
chunk = message.choices[0].delta.content
|
471 |
-
main_content += chunk
|
472 |
-
yield main_content, "" # Yield partial main content without sources
|
473 |
-
|
474 |
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
475 |
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
476 |
|
@@ -530,7 +588,7 @@ Write a detailed and complete response that answers the following user question:
|
|
530 |
logging.info(f"API call {i+1}/{num_calls}")
|
531 |
for message in client.chat_completion(
|
532 |
messages=[{"role": "user", "content": prompt}],
|
533 |
-
max_tokens=
|
534 |
temperature=temperature,
|
535 |
stream=True,
|
536 |
):
|
@@ -590,17 +648,20 @@ use_web_search = gr.Checkbox(label="Use Web Search", value=True)
|
|
590 |
|
591 |
custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"
|
592 |
|
|
|
|
|
593 |
demo = gr.ChatInterface(
|
594 |
respond,
|
|
|
595 |
additional_inputs=[
|
596 |
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
|
597 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
598 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
599 |
-
|
600 |
-
|
601 |
],
|
602 |
-
title="AI-powered
|
603 |
-
description="Chat with your PDFs or use web search to answer questions.
|
604 |
theme=gr.themes.Soft(
|
605 |
primary_hue="orange",
|
606 |
secondary_hue="amber",
|
@@ -623,18 +684,19 @@ demo = gr.ChatInterface(
|
|
623 |
examples=[
|
624 |
["Tell me about the contents of the uploaded PDFs."],
|
625 |
["What are the main topics discussed in the documents?"],
|
626 |
-
["Can you summarize the key points from the PDFs?"]
|
|
|
627 |
],
|
628 |
cache_examples=False,
|
629 |
analytics_enabled=False,
|
630 |
-
textbox=gr.Textbox(placeholder=
|
631 |
chatbot = gr.Chatbot(
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
)
|
638 |
)
|
639 |
|
640 |
# Add file upload functionality
|
@@ -679,4 +741,4 @@ with demo:
|
|
679 |
)
|
680 |
|
681 |
if __name__ == "__main__":
|
682 |
-
demo.launch(share=True)
|
|
|
4 |
import gradio as gr
|
5 |
import requests
|
6 |
from duckduckgo_search import DDGS
|
7 |
+
from typing import List, Dict
|
8 |
from pydantic import BaseModel, Field
|
9 |
from tempfile import NamedTemporaryFile
|
10 |
from langchain_community.vectorstores import FAISS
|
|
|
13 |
from langchain_community.document_loaders import PyPDFLoader
|
14 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
15 |
from llama_parse import LlamaParse
|
|
|
16 |
from huggingface_hub import InferenceClient
|
17 |
import inspect
|
18 |
import logging
|
|
|
36 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
37 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
38 |
"@cf/meta/llama-3.1-8b-instruct",
|
39 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
40 |
+
"duckduckgo/gpt-4o-mini",
|
41 |
+
"duckduckgo/claude-3-haiku",
|
42 |
+
"duckduckgo/llama-3.1-70b",
|
43 |
+
"duckduckgo/mixtral-8x7b"
|
44 |
]
|
45 |
|
46 |
# Initialize LlamaParse
|
|
|
274 |
print(f"Final clean response: {final_response[:100]}...")
|
275 |
return final_response
|
276 |
|
277 |
+
def chatbot_interface(message, history, model, temperature, num_calls):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
if not message.strip():
|
279 |
return "", history
|
280 |
|
281 |
history = history + [(message, "")]
|
282 |
|
283 |
try:
|
284 |
+
for response in respond(message, history, model, temperature, num_calls):
|
285 |
history[-1] = (message, response)
|
286 |
yield history
|
287 |
except gr.CancelledError:
|
|
|
291 |
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
292 |
yield history
|
293 |
|
294 |
+
def retry_last_response(history, model, temperature, num_calls):
|
295 |
if not history:
|
296 |
return history
|
297 |
|
298 |
last_user_msg = history[-1][0]
|
299 |
history = history[:-1] # Remove the last response
|
300 |
|
301 |
+
return chatbot_interface(last_user_msg, history, model, temperature, num_calls)
|
302 |
+
|
303 |
+
def truncate_context(context, max_length=16000):
|
304 |
+
"""Truncate the context to a maximum length."""
|
305 |
+
if len(context) <= max_length:
|
306 |
+
return context
|
307 |
+
return context[:max_length] + "..."
|
308 |
+
|
309 |
+
def get_response_from_duckduckgo(query, model, context, num_calls=1, temperature=0.2):
|
310 |
+
logging.info(f"Using DuckDuckGo chat with model: {model}")
|
311 |
+
ddg_model = model.split('/')[-1] # Extract the model name from the full string
|
312 |
+
|
313 |
+
# Truncate the context to avoid exceeding input limits
|
314 |
+
truncated_context = truncate_context(context)
|
315 |
+
|
316 |
+
full_response = ""
|
317 |
+
for _ in range(num_calls):
|
318 |
+
try:
|
319 |
+
# Include truncated context in the query
|
320 |
+
contextualized_query = f"Using the following context:\n{truncated_context}\n\nUser question: {query}"
|
321 |
+
results = DDGS().chat(contextualized_query, model=ddg_model)
|
322 |
+
full_response += results + "\n"
|
323 |
+
logging.info(f"DuckDuckGo API response received. Length: {len(results)}")
|
324 |
+
except Exception as e:
|
325 |
+
logging.error(f"Error in generating response from DuckDuckGo: {str(e)}")
|
326 |
+
yield f"An error occurred with the {model} model: {str(e)}. Please try again."
|
327 |
+
return
|
328 |
+
|
329 |
+
yield full_response.strip()
|
330 |
+
|
331 |
+
class ConversationManager:
|
332 |
+
def __init__(self):
|
333 |
+
self.history = []
|
334 |
+
self.current_context = None
|
335 |
|
336 |
+
def add_interaction(self, query, response):
|
337 |
+
self.history.append((query, response))
|
338 |
+
self.current_context = f"Previous query: {query}\nPrevious response summary: {response[:200]}..."
|
339 |
+
|
340 |
+
def get_context(self):
|
341 |
+
return self.current_context
|
342 |
+
|
343 |
+
conversation_manager = ConversationManager()
|
344 |
+
|
345 |
+
def get_web_search_results(query: str, max_results: int = 10) -> List[Dict[str, str]]:
|
346 |
+
try:
|
347 |
+
results = list(DDGS().text(query, max_results=max_results))
|
348 |
+
if not results:
|
349 |
+
print(f"No results found for query: {query}")
|
350 |
+
return results
|
351 |
+
except Exception as e:
|
352 |
+
print(f"An error occurred during web search: {str(e)}")
|
353 |
+
return [{"error": f"An error occurred during web search: {str(e)}"}]
|
354 |
+
|
355 |
+
def rephrase_query(original_query: str, conversation_manager: ConversationManager) -> str:
|
356 |
+
context = conversation_manager.get_context()
|
357 |
+
if context:
|
358 |
+
prompt = f"""You are a highly intelligent conversational chatbot. Your task is to analyze the given context and new query, then decide whether to rephrase the query with or without incorporating the context. Follow these steps:
|
359 |
+
|
360 |
+
1. Determine if the new query is a continuation of the previous conversation or an entirely new topic.
|
361 |
+
2. If it's a continuation, rephrase the query by incorporating relevant information from the context to make it more specific and contextual.
|
362 |
+
3. If it's a new topic, rephrase the query to make it more appropriate for a web search, focusing on clarity and accuracy without using the previous context.
|
363 |
+
4. Provide ONLY the rephrased query without any additional explanation or reasoning.
|
364 |
+
|
365 |
+
Context: {context}
|
366 |
+
|
367 |
+
New query: {original_query}
|
368 |
+
|
369 |
+
Rephrased query:"""
|
370 |
+
response = DDGS().chat(prompt, model="llama-3.1-70b")
|
371 |
+
rephrased_query = response.split('\n')[0].strip()
|
372 |
+
return rephrased_query
|
373 |
+
return original_query
|
374 |
+
|
375 |
+
def summarize_web_results(query: str, search_results: List[Dict[str, str]], conversation_manager: ConversationManager) -> str:
|
376 |
+
try:
|
377 |
+
context = conversation_manager.get_context()
|
378 |
+
search_context = "\n\n".join([f"Title: {result['title']}\nContent: {result['body']}" for result in search_results])
|
379 |
+
|
380 |
+
prompt = f"""You are a highly intelligent & expert analyst and your job is to skillfully articulate the web search results about '{query}' and considering the context: {context},
|
381 |
+
You have to create a comprehensive news summary FOCUSING on the context provided to you.
|
382 |
+
Include key facts, relevant statistics, and expert opinions if available.
|
383 |
+
Ensure the article is well-structured with an introduction, main body, and conclusion, IF NECESSARY.
|
384 |
+
Address the query in the context of the ongoing conversation IF APPLICABLE.
|
385 |
+
Cite sources directly within the generated text and not at the end of the generated text, integrating URLs where appropriate to support the information provided:
|
386 |
+
|
387 |
+
{search_context}
|
388 |
+
|
389 |
+
Article:"""
|
390 |
+
|
391 |
+
summary = DDGS().chat(prompt, model="llama-3.1-70b")
|
392 |
+
return summary
|
393 |
+
except Exception as e:
|
394 |
+
return f"An error occurred during summarization: {str(e)}"
|
395 |
+
|
396 |
+
# Modify the existing respond function to handle both PDF and web search
|
397 |
+
def respond(message, history, model, temperature, num_calls, selected_docs, use_web_search):
|
398 |
logging.info(f"User Query: {message}")
|
399 |
logging.info(f"Model Used: {model}")
|
|
|
|
|
400 |
logging.info(f"Selected Documents: {selected_docs}")
|
401 |
+
logging.info(f"Use Web Search: {use_web_search}")
|
402 |
+
|
403 |
+
if use_web_search:
|
404 |
+
original_query = message
|
405 |
+
rephrased_query = rephrase_query(message, conversation_manager)
|
406 |
+
logging.info(f"Original query: {original_query}")
|
407 |
+
logging.info(f"Rephrased query: {rephrased_query}")
|
408 |
+
|
409 |
+
final_summary = ""
|
410 |
+
for _ in range(num_calls):
|
411 |
+
search_results = get_web_search_results(rephrased_query)
|
412 |
+
if not search_results:
|
413 |
+
final_summary += f"No search results found for the query: {rephrased_query}\n\n"
|
414 |
+
elif "error" in search_results[0]:
|
415 |
+
final_summary += search_results[0]["error"] + "\n\n"
|
416 |
+
else:
|
417 |
+
summary = summarize_web_results(rephrased_query, search_results, conversation_manager)
|
418 |
+
final_summary += summary + "\n\n"
|
419 |
|
420 |
+
if final_summary:
|
421 |
+
conversation_manager.add_interaction(original_query, final_summary)
|
422 |
+
yield final_summary
|
|
|
|
|
|
|
|
|
423 |
else:
|
424 |
+
yield "Unable to generate a response. Please try a different query."
|
425 |
+
else:
|
426 |
+
# Existing PDF search logic
|
427 |
+
try:
|
428 |
embed = get_embeddings()
|
429 |
if os.path.exists("faiss_database"):
|
430 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
431 |
retriever = database.as_retriever(search_kwargs={"k": 20})
|
432 |
|
|
|
433 |
all_relevant_docs = retriever.get_relevant_documents(message)
|
434 |
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
435 |
|
|
|
438 |
return
|
439 |
|
440 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
441 |
+
logging.info(f"Context length: {len(context_str)}")
|
442 |
else:
|
443 |
context_str = "No documents available."
|
444 |
yield "No documents available. Please upload PDF documents to answer questions."
|
|
|
446 |
|
447 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
448 |
# Use Cloudflare API
|
449 |
+
for response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
450 |
+
yield response
|
|
|
|
|
451 |
else:
|
452 |
# Use Hugging Face API
|
453 |
+
for response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
454 |
+
yield response
|
455 |
+
except Exception as e:
|
456 |
+
logging.error(f"Error with {model}: {str(e)}")
|
457 |
+
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
458 |
+
logging.info("Falling back to Mistral model due to Phi-3 error")
|
459 |
+
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
460 |
+
yield from respond(message, history, fallback_model, temperature, num_calls, selected_docs, use_web_search)
|
461 |
+
else:
|
462 |
+
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
|
|
|
|
463 |
|
464 |
logging.basicConfig(level=logging.DEBUG)
|
465 |
|
|
|
529 |
|
530 |
return FAISS.from_documents(documents, embed)
|
531 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
532 |
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
533 |
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
534 |
|
|
|
588 |
logging.info(f"API call {i+1}/{num_calls}")
|
589 |
for message in client.chat_completion(
|
590 |
messages=[{"role": "user", "content": prompt}],
|
591 |
+
max_tokens=20000,
|
592 |
temperature=temperature,
|
593 |
stream=True,
|
594 |
):
|
|
|
648 |
|
649 |
custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"
|
650 |
|
651 |
+
# Update the demo interface
|
652 |
+
# Update the Gradio interface
|
653 |
demo = gr.ChatInterface(
|
654 |
respond,
|
655 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
|
656 |
additional_inputs=[
|
657 |
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
|
658 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
659 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
660 |
+
gr.CheckboxGroup(label="Select documents to query", choices=[]),
|
661 |
+
gr.Checkbox(label="Use Web Search", value=True)
|
662 |
],
|
663 |
+
title="AI-powered PDF Chat and Web Search Assistant",
|
664 |
+
description="Chat with your PDFs or use web search to answer questions.",
|
665 |
theme=gr.themes.Soft(
|
666 |
primary_hue="orange",
|
667 |
secondary_hue="amber",
|
|
|
684 |
examples=[
|
685 |
["Tell me about the contents of the uploaded PDFs."],
|
686 |
["What are the main topics discussed in the documents?"],
|
687 |
+
["Can you summarize the key points from the PDFs?"],
|
688 |
+
["What's the latest news about artificial intelligence?"]
|
689 |
],
|
690 |
cache_examples=False,
|
691 |
analytics_enabled=False,
|
692 |
+
textbox=gr.Textbox(placeholder="Ask a question about the uploaded PDFs or any topic", container=False, scale=7),
|
693 |
chatbot = gr.Chatbot(
|
694 |
+
show_copy_button=True,
|
695 |
+
likeable=True,
|
696 |
+
layout="bubble",
|
697 |
+
height=400,
|
698 |
+
value=initial_conversation()
|
699 |
+
)
|
700 |
)
|
701 |
|
702 |
# Add file upload functionality
|
|
|
741 |
)
|
742 |
|
743 |
if __name__ == "__main__":
|
744 |
+
demo.launch(share=True)
|