Spaces:
Paused
Paused
Shreyas094
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,9 @@ import requests
|
|
7 |
import random
|
8 |
import urllib.parse
|
9 |
import spacy
|
|
|
|
|
|
|
10 |
from tempfile import NamedTemporaryFile
|
11 |
from typing import List, Dict
|
12 |
from bs4 import BeautifulSoup
|
@@ -22,26 +25,28 @@ from langchain_core.documents import Document
|
|
22 |
|
23 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
24 |
|
|
|
|
|
|
|
25 |
class Agent1:
|
26 |
def __init__(self):
|
27 |
-
|
28 |
|
29 |
def rephrase_and_split(self, user_input: str) -> List[str]:
|
30 |
-
doc = self.nlp(user_input)
|
31 |
-
|
32 |
# Identify question words
|
33 |
question_words = set(["what", "when", "where", "who", "whom", "which", "whose", "why", "how"])
|
34 |
|
35 |
# Split sentences
|
36 |
-
sentences =
|
37 |
|
38 |
# Identify questions
|
39 |
questions = []
|
40 |
for sent in sentences:
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
45 |
|
46 |
# If no questions identified, return the original input
|
47 |
if not questions:
|
|
|
7 |
import random
|
8 |
import urllib.parse
|
9 |
import spacy
|
10 |
+
import nltk
|
11 |
+
from nltk.tokenize import sent_tokenize
|
12 |
+
from typing import List, Dict
|
13 |
from tempfile import NamedTemporaryFile
|
14 |
from typing import List, Dict
|
15 |
from bs4 import BeautifulSoup
|
|
|
25 |
|
26 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
27 |
|
28 |
+
# Download necessary NLTK data
|
29 |
+
nltk.download('punkt')
|
30 |
+
|
31 |
class Agent1:
|
32 |
def __init__(self):
|
33 |
+
pass
|
34 |
|
35 |
def rephrase_and_split(self, user_input: str) -> List[str]:
|
|
|
|
|
36 |
# Identify question words
|
37 |
question_words = set(["what", "when", "where", "who", "whom", "which", "whose", "why", "how"])
|
38 |
|
39 |
# Split sentences
|
40 |
+
sentences = sent_tokenize(user_input)
|
41 |
|
42 |
# Identify questions
|
43 |
questions = []
|
44 |
for sent in sentences:
|
45 |
+
words = sent.lower().split()
|
46 |
+
if words[0] in question_words or sent.strip().endswith('?'):
|
47 |
+
questions.append(sent)
|
48 |
+
elif any(word in question_words for word in words):
|
49 |
+
questions.append(sent)
|
50 |
|
51 |
# If no questions identified, return the original input
|
52 |
if not questions:
|