Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -97,48 +97,52 @@ class Agent1:
|
|
97 |
return questions
|
98 |
|
99 |
def update_context(self, query: str):
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
118 |
|
119 |
def apply_context(self, query: str) -> str:
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
new_query_parts.append(f"of {self.context['main_topic']}")
|
138 |
|
139 |
-
|
|
|
140 |
|
141 |
-
|
142 |
|
143 |
def process(self, user_input: str) -> tuple[List[str], Dict[str, List[Dict[str, str]]]]:
|
144 |
self.update_context(user_input)
|
@@ -306,13 +310,15 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
306 |
|
307 |
return all_results
|
308 |
|
309 |
-
def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
310 |
if not question:
|
311 |
return "Please enter a question."
|
312 |
|
|
|
|
|
|
|
313 |
model = get_model(temperature, top_p, repetition_penalty)
|
314 |
embed = get_embeddings()
|
315 |
-
agent1 = Agent1() # Create Agent1 without passing a model
|
316 |
|
317 |
if os.path.exists("faiss_database"):
|
318 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
@@ -322,8 +328,11 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
|
322 |
max_attempts = 3
|
323 |
context_reduction_factor = 0.7
|
324 |
|
|
|
|
|
|
|
325 |
if web_search:
|
326 |
-
queries, search_results = agent1.process(
|
327 |
all_answers = []
|
328 |
|
329 |
for query in queries:
|
@@ -395,7 +404,7 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
|
395 |
return "No documents available. Please upload documents or enable web search to answer questions."
|
396 |
|
397 |
retriever = database.as_retriever()
|
398 |
-
relevant_docs = retriever.get_relevant_documents(
|
399 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
400 |
|
401 |
if attempt > 0:
|
@@ -413,7 +422,7 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
|
413 |
"""
|
414 |
|
415 |
prompt_val = ChatPromptTemplate.from_template(prompt_template)
|
416 |
-
formatted_prompt = prompt_val.format(context=context_str, question=
|
417 |
|
418 |
full_response = generate_chunked_response(model, formatted_prompt)
|
419 |
|
@@ -466,8 +475,10 @@ with gr.Blocks() as demo:
|
|
466 |
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
|
467 |
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)
|
468 |
|
|
|
|
|
469 |
def chat(question, history, temperature, top_p, repetition_penalty, web_search):
|
470 |
-
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search)
|
471 |
history.append((question, answer))
|
472 |
return "", history
|
473 |
|
|
|
97 |
return questions
|
98 |
|
99 |
def update_context(self, query: str):
|
100 |
+
tokens = nltk.pos_tag(word_tokenize(query))
|
101 |
+
noun_phrases = []
|
102 |
+
current_phrase = []
|
103 |
+
|
104 |
+
for word, tag in tokens:
|
105 |
+
if tag.startswith('NN') or tag.startswith('JJ'):
|
106 |
+
current_phrase.append(word)
|
107 |
+
else:
|
108 |
+
if current_phrase:
|
109 |
+
noun_phrases.append(' '.join(current_phrase))
|
110 |
+
current_phrase = []
|
111 |
+
|
112 |
+
if current_phrase:
|
113 |
+
noun_phrases.append(' '.join(current_phrase))
|
114 |
+
|
115 |
+
if noun_phrases:
|
116 |
+
self.context['main_topic'] = noun_phrases[0]
|
117 |
+
self.context['related_topics'] = noun_phrases[1:]
|
118 |
+
self.context['last_query'] = query
|
119 |
|
120 |
def apply_context(self, query: str) -> str:
|
121 |
+
words = word_tokenize(query.lower())
|
122 |
+
|
123 |
+
if (len(words) <= 5 or
|
124 |
+
any(word in self.pronouns for word in words) or
|
125 |
+
(self.context.get('main_topic') and self.context['main_topic'].lower() not in query.lower())):
|
126 |
+
|
127 |
+
new_query_parts = []
|
128 |
+
main_topic_added = False
|
129 |
|
130 |
+
for word in words:
|
131 |
+
if word in self.pronouns and self.context.get('main_topic'):
|
132 |
+
new_query_parts.append(self.context['main_topic'])
|
133 |
+
main_topic_added = True
|
134 |
+
else:
|
135 |
+
new_query_parts.append(word)
|
136 |
+
|
137 |
+
if not main_topic_added and self.context.get('main_topic'):
|
138 |
+
new_query_parts.append(f"in the context of {self.context['main_topic']}")
|
139 |
|
140 |
+
query = ' '.join(new_query_parts)
|
|
|
141 |
|
142 |
+
if self.context.get('last_query'):
|
143 |
+
query = f"{self.context['last_query']} and now {query}"
|
144 |
|
145 |
+
return query
|
146 |
|
147 |
def process(self, user_input: str) -> tuple[List[str], Dict[str, List[Dict[str, str]]]]:
|
148 |
self.update_context(user_input)
|
|
|
310 |
|
311 |
return all_results
|
312 |
|
313 |
+
def ask_question(question, temperature, top_p, repetition_penalty, web_search, agent1=None):
|
314 |
if not question:
|
315 |
return "Please enter a question."
|
316 |
|
317 |
+
if agent1 is None:
|
318 |
+
agent1 = Agent1()
|
319 |
+
|
320 |
model = get_model(temperature, top_p, repetition_penalty)
|
321 |
embed = get_embeddings()
|
|
|
322 |
|
323 |
if os.path.exists("faiss_database"):
|
324 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
|
|
328 |
max_attempts = 3
|
329 |
context_reduction_factor = 0.7
|
330 |
|
331 |
+
agent1.update_context(question)
|
332 |
+
contextualized_question = agent1.apply_context(question)
|
333 |
+
|
334 |
if web_search:
|
335 |
+
queries, search_results = agent1.process(contextualized_question)
|
336 |
all_answers = []
|
337 |
|
338 |
for query in queries:
|
|
|
404 |
return "No documents available. Please upload documents or enable web search to answer questions."
|
405 |
|
406 |
retriever = database.as_retriever()
|
407 |
+
relevant_docs = retriever.get_relevant_documents(contextualized_question)
|
408 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
409 |
|
410 |
if attempt > 0:
|
|
|
422 |
"""
|
423 |
|
424 |
prompt_val = ChatPromptTemplate.from_template(prompt_template)
|
425 |
+
formatted_prompt = prompt_val.format(context=context_str, question=contextualized_question)
|
426 |
|
427 |
full_response = generate_chunked_response(model, formatted_prompt)
|
428 |
|
|
|
475 |
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
|
476 |
web_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False)
|
477 |
|
478 |
+
agent1 = Agent1()
|
479 |
+
|
480 |
def chat(question, history, temperature, top_p, repetition_penalty, web_search):
|
481 |
+
answer = ask_question(question, temperature, top_p, repetition_penalty, web_search, agent1)
|
482 |
history.append((question, answer))
|
483 |
return "", history
|
484 |
|