Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,7 +14,7 @@ from langchain.prompts import PromptTemplate
|
|
| 14 |
from langchain.chains import LLMChain
|
| 15 |
from langchain_core.prompts import ChatPromptTemplate
|
| 16 |
from langchain_community.vectorstores import FAISS
|
| 17 |
-
from langchain_community.document_loaders import PyPDFLoader
|
| 18 |
from langchain_core.output_parsers import StrOutputParser
|
| 19 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 20 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
@@ -25,8 +25,7 @@ from sklearn.feature_extraction.text import TfidfVectorizer
|
|
| 25 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 26 |
from openpyxl import load_workbook
|
| 27 |
from openpyxl.utils.dataframe import dataframe_to_rows
|
| 28 |
-
|
| 29 |
-
|
| 30 |
|
| 31 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
| 32 |
|
|
@@ -55,6 +54,86 @@ def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document
|
|
| 55 |
chunks = text_splitter.split_documents(pages)
|
| 56 |
return chunks
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
def get_embeddings():
|
| 59 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 60 |
|
|
@@ -682,7 +761,6 @@ def export_memory_db_to_excel():
|
|
| 682 |
|
| 683 |
return excel_path
|
| 684 |
|
| 685 |
-
# Gradio interface
|
| 686 |
# Gradio interface
|
| 687 |
with gr.Blocks() as demo:
|
| 688 |
gr.Markdown("# Chat with your PDF documents and News")
|
|
@@ -691,9 +769,14 @@ with gr.Blocks() as demo:
|
|
| 691 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
| 692 |
update_button = gr.Button("Update Vector Store")
|
| 693 |
use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 694 |
|
| 695 |
update_output = gr.Textbox(label="Update Status")
|
| 696 |
-
update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output)
|
| 697 |
|
| 698 |
with gr.Row():
|
| 699 |
with gr.Column(scale=2):
|
|
|
|
| 14 |
from langchain.chains import LLMChain
|
| 15 |
from langchain_core.prompts import ChatPromptTemplate
|
| 16 |
from langchain_community.vectorstores import FAISS
|
| 17 |
+
from langchain_community.document_loaders import PyPDFLoader, PDFMinerLoader
|
| 18 |
from langchain_core.output_parsers import StrOutputParser
|
| 19 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 20 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
|
| 25 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 26 |
from openpyxl import load_workbook
|
| 27 |
from openpyxl.utils.dataframe import dataframe_to_rows
|
| 28 |
+
import camelot
|
|
|
|
| 29 |
|
| 30 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
| 31 |
|
|
|
|
| 54 |
chunks = text_splitter.split_documents(pages)
|
| 55 |
return chunks
|
| 56 |
|
| 57 |
+
def load_and_split_document_basic(file: NamedTemporaryFile, parser: str) -> List[Document]:
|
| 58 |
+
"""Loads and splits the document into pages."""
|
| 59 |
+
if parser == "PyPDF":
|
| 60 |
+
loader = PyPDFLoader(file.name)
|
| 61 |
+
elif parser == "PDFMiner":
|
| 62 |
+
loader = PDFMinerLoader(file.name)
|
| 63 |
+
elif parser == "Camelot":
|
| 64 |
+
return load_and_split_document_camelot(file)
|
| 65 |
+
else:
|
| 66 |
+
raise ValueError(f"Unknown parser: {parser}")
|
| 67 |
+
|
| 68 |
+
return loader.load_and_split()
|
| 69 |
+
|
| 70 |
+
def load_and_split_document_recursive(file: NamedTemporaryFile, parser: str) -> List[Document]:
|
| 71 |
+
"""Loads and splits the document into chunks using recursive character text splitter."""
|
| 72 |
+
if parser == "PyPDF":
|
| 73 |
+
loader = PyPDFLoader(file.name)
|
| 74 |
+
elif parser == "PDFMiner":
|
| 75 |
+
loader = PDFMinerLoader(file.name)
|
| 76 |
+
elif parser == "Camelot":
|
| 77 |
+
return load_and_split_document_camelot(file)
|
| 78 |
+
else:
|
| 79 |
+
raise ValueError(f"Unknown parser: {parser}")
|
| 80 |
+
|
| 81 |
+
pages = loader.load()
|
| 82 |
+
|
| 83 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 84 |
+
chunk_size=1000,
|
| 85 |
+
chunk_overlap=200,
|
| 86 |
+
length_function=len,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
chunks = text_splitter.split_documents(pages)
|
| 90 |
+
return chunks
|
| 91 |
+
|
| 92 |
+
def load_and_split_document_camelot(file: NamedTemporaryFile) -> List[Document]:
|
| 93 |
+
"""Loads and splits the document using Camelot for tables and charts."""
|
| 94 |
+
tables = camelot.read_pdf(file.name, pages='all')
|
| 95 |
+
documents = []
|
| 96 |
+
|
| 97 |
+
for i, table in enumerate(tables):
|
| 98 |
+
df = table.df
|
| 99 |
+
content = df.to_string(index=False)
|
| 100 |
+
documents.append(Document(page_content=content, metadata={"source": file.name, "table_number": i+1}))
|
| 101 |
+
|
| 102 |
+
return documents
|
| 103 |
+
|
| 104 |
+
def load_document(file: NamedTemporaryFile, parser: str, use_recursive_splitter: bool) -> List[Document]:
|
| 105 |
+
"""Loads the document using the specified parser and splitting method."""
|
| 106 |
+
if parser == "Camelot":
|
| 107 |
+
return load_and_split_document_camelot(file)
|
| 108 |
+
elif use_recursive_splitter:
|
| 109 |
+
return load_and_split_document_recursive(file, parser)
|
| 110 |
+
else:
|
| 111 |
+
return load_and_split_document_basic(file, parser)
|
| 112 |
+
|
| 113 |
+
def update_vectors(files, use_recursive_splitter, selected_parser):
|
| 114 |
+
if not files:
|
| 115 |
+
return "Please upload at least one PDF file."
|
| 116 |
+
|
| 117 |
+
embed = get_embeddings()
|
| 118 |
+
total_chunks = 0
|
| 119 |
+
|
| 120 |
+
all_data = []
|
| 121 |
+
for file in files:
|
| 122 |
+
data = load_document(file, selected_parser, use_recursive_splitter)
|
| 123 |
+
all_data.extend(data)
|
| 124 |
+
total_chunks += len(data)
|
| 125 |
+
|
| 126 |
+
if os.path.exists("faiss_database"):
|
| 127 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
| 128 |
+
database.add_documents(all_data)
|
| 129 |
+
else:
|
| 130 |
+
database = FAISS.from_documents(all_data, embed)
|
| 131 |
+
|
| 132 |
+
database.save_local("faiss_database")
|
| 133 |
+
|
| 134 |
+
splitting_method = "recursive splitting" if use_recursive_splitter else "page-by-page splitting"
|
| 135 |
+
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {selected_parser} parser with {splitting_method}."
|
| 136 |
+
|
| 137 |
def get_embeddings():
|
| 138 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 139 |
|
|
|
|
| 761 |
|
| 762 |
return excel_path
|
| 763 |
|
|
|
|
| 764 |
# Gradio interface
|
| 765 |
with gr.Blocks() as demo:
|
| 766 |
gr.Markdown("# Chat with your PDF documents and News")
|
|
|
|
| 769 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
| 770 |
update_button = gr.Button("Update Vector Store")
|
| 771 |
use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False)
|
| 772 |
+
parser_dropdown = gr.Dropdown(
|
| 773 |
+
choices=["PyPDF", "PDFMiner", "Camelot"],
|
| 774 |
+
label="Select Parser",
|
| 775 |
+
value="PyPDF"
|
| 776 |
+
)
|
| 777 |
|
| 778 |
update_output = gr.Textbox(label="Update Status")
|
| 779 |
+
update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter, parser_dropdown], outputs=update_output)
|
| 780 |
|
| 781 |
with gr.Row():
|
| 782 |
with gr.Column(scale=2):
|