Shreyas094 commited on
Commit
eac1164
·
verified ·
1 Parent(s): 8ac8380

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -3
app.py CHANGED
@@ -306,6 +306,7 @@ def process_news(query, temperature, top_p, repetition_penalty, news_source):
306
 
307
  full_summary, cleaned_summary = summarize_news_content(clean_content, model)
308
  relevance_score = calculate_relevance_score(cleaned_summary, model)
 
309
 
310
  processed_article = {
311
  "published_date": article["published_date"],
@@ -314,11 +315,12 @@ def process_news(query, temperature, top_p, repetition_penalty, news_source):
314
  "content": clean_content,
315
  "summary": full_summary,
316
  "cleaned_summary": cleaned_summary,
317
- "relevance_score": relevance_score
318
  }
319
  processed_articles.append(processed_article)
320
  except Exception as e:
321
  print(f"Error processing article: {str(e)}")
 
322
 
323
  if not processed_articles:
324
  return f"Failed to process any news articles from {news_source}. Please try again or check the summarization process."
@@ -455,10 +457,19 @@ def export_news_to_excel():
455
  df['summary'] = df['cleaned_summary']
456
  df = df.drop(columns=['cleaned_summary']) # Remove the extra column
457
 
 
 
 
 
 
 
458
  # Reorder columns to put relevance_score after summary
459
  columns = ['published_date', 'title', 'url', 'content', 'summary', 'relevance_score']
460
  df = df[columns]
461
 
 
 
 
462
  with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
463
  excel_path = tmp.name
464
  df.to_excel(excel_path, index=False)
@@ -487,13 +498,17 @@ def calculate_relevance_score(summary, model):
487
  chain = LLMChain(llm=model, prompt=prompt_template)
488
  response = chain.run(summary=summary)
489
 
 
 
490
  try:
491
  score = float(response.strip())
492
- return min(max(score, 0.00), 1.00) # Ensure the score is between 0.00 and 1.00
 
 
493
  except ValueError:
494
  print(f"Error parsing relevance score: {response}")
495
  return 0.00
496
-
497
  def ask_question(question, temperature, top_p, repetition_penalty, web_search, google_news_rss):
498
  global conversation_history
499
 
 
306
 
307
  full_summary, cleaned_summary = summarize_news_content(clean_content, model)
308
  relevance_score = calculate_relevance_score(cleaned_summary, model)
309
+ print(f"Relevance score for article '{article['title']}': {relevance_score}") # Debug print
310
 
311
  processed_article = {
312
  "published_date": article["published_date"],
 
315
  "content": clean_content,
316
  "summary": full_summary,
317
  "cleaned_summary": cleaned_summary,
318
+ "relevance_score": relevance_score # Ensure this line is present
319
  }
320
  processed_articles.append(processed_article)
321
  except Exception as e:
322
  print(f"Error processing article: {str(e)}")
323
+
324
 
325
  if not processed_articles:
326
  return f"Failed to process any news articles from {news_source}. Please try again or check the summarization process."
 
457
  df['summary'] = df['cleaned_summary']
458
  df = df.drop(columns=['cleaned_summary']) # Remove the extra column
459
 
460
+ # Ensure relevance_score is present and convert to float
461
+ if 'relevance_score' not in df.columns:
462
+ df['relevance_score'] = 0.0
463
+ else:
464
+ df['relevance_score'] = df['relevance_score'].astype(float)
465
+
466
  # Reorder columns to put relevance_score after summary
467
  columns = ['published_date', 'title', 'url', 'content', 'summary', 'relevance_score']
468
  df = df[columns]
469
 
470
+ # Format relevance_score to display 2 decimal places
471
+ df['relevance_score'] = df['relevance_score'].apply(lambda x: f"{x:.2f}")
472
+
473
  with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
474
  excel_path = tmp.name
475
  df.to_excel(excel_path, index=False)
 
498
  chain = LLMChain(llm=model, prompt=prompt_template)
499
  response = chain.run(summary=summary)
500
 
501
+ print(f"Raw relevance score response: {response}") # Debug print
502
+
503
  try:
504
  score = float(response.strip())
505
+ final_score = min(max(score, 0.00), 1.00) # Ensure the score is between 0.00 and 1.00
506
+ print(f"Processed relevance score: {final_score}") # Debug print
507
+ return final_score
508
  except ValueError:
509
  print(f"Error parsing relevance score: {response}")
510
  return 0.00
511
+
512
  def ask_question(question, temperature, top_p, repetition_penalty, web_search, google_news_rss):
513
  global conversation_history
514