Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -223,23 +223,23 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
223 |
|
224 |
def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
225 |
global conversation_history
|
226 |
-
|
227 |
if not question:
|
228 |
return "Please enter a question."
|
229 |
-
|
230 |
if question in memory_database and not web_search:
|
231 |
answer = memory_database[question]
|
232 |
else:
|
233 |
model = get_model(temperature, top_p, repetition_penalty)
|
234 |
embed = get_embeddings()
|
235 |
-
|
236 |
if web_search:
|
237 |
search_results = google_search(question)
|
238 |
context_str = "\n".join([result["text"] for result in search_results if result["text"]])
|
239 |
-
|
240 |
# Convert web search results to Document format
|
241 |
web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]]
|
242 |
-
|
243 |
# Check if the FAISS database exists
|
244 |
if os.path.exists("faiss_database"):
|
245 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
@@ -247,7 +247,7 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
|
247 |
else:
|
248 |
database = FAISS.from_documents(web_docs, embed)
|
249 |
database.save_local("faiss_database")
|
250 |
-
|
251 |
prompt_template = """
|
252 |
Answer the question based on the following web search results:
|
253 |
Web Search Results:
|
@@ -264,32 +264,32 @@ def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
|
264 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
265 |
else:
|
266 |
return "No FAISS database found. Please upload documents to create the vector store."
|
267 |
-
|
268 |
history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history])
|
269 |
-
|
270 |
if is_related_to_history(question, conversation_history):
|
271 |
context_str = "No additional context needed. Please refer to the conversation history."
|
272 |
else:
|
273 |
retriever = database.as_retriever()
|
274 |
relevant_docs = retriever.get_relevant_documents(question)
|
275 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
276 |
-
|
277 |
prompt_val = ChatPromptTemplate.from_template(prompt)
|
278 |
formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question)
|
279 |
-
|
280 |
answer = generate_chunked_response(model, formatted_prompt)
|
281 |
answer = re.split(r'Question:|Current Question:', answer)[-1].strip()
|
282 |
-
|
283 |
# Remove any remaining prompt instructions from the answer
|
284 |
answer_lines = answer.split('\n')
|
285 |
answer = '\n'.join(line for line in answer_lines if not line.startswith('If') and not line.startswith('Provide'))
|
286 |
-
|
287 |
if not web_search:
|
288 |
memory_database[question] = answer
|
289 |
-
|
290 |
if not web_search:
|
291 |
conversation_history = manage_conversation_history(question, answer, conversation_history)
|
292 |
-
|
293 |
return answer
|
294 |
|
295 |
def update_vectors(files, use_recursive_splitter):
|
|
|
223 |
|
224 |
def ask_question(question, temperature, top_p, repetition_penalty, web_search):
|
225 |
global conversation_history
|
226 |
+
|
227 |
if not question:
|
228 |
return "Please enter a question."
|
229 |
+
|
230 |
if question in memory_database and not web_search:
|
231 |
answer = memory_database[question]
|
232 |
else:
|
233 |
model = get_model(temperature, top_p, repetition_penalty)
|
234 |
embed = get_embeddings()
|
235 |
+
|
236 |
if web_search:
|
237 |
search_results = google_search(question)
|
238 |
context_str = "\n".join([result["text"] for result in search_results if result["text"]])
|
239 |
+
|
240 |
# Convert web search results to Document format
|
241 |
web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]]
|
242 |
+
|
243 |
# Check if the FAISS database exists
|
244 |
if os.path.exists("faiss_database"):
|
245 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
|
|
247 |
else:
|
248 |
database = FAISS.from_documents(web_docs, embed)
|
249 |
database.save_local("faiss_database")
|
250 |
+
|
251 |
prompt_template = """
|
252 |
Answer the question based on the following web search results:
|
253 |
Web Search Results:
|
|
|
264 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
265 |
else:
|
266 |
return "No FAISS database found. Please upload documents to create the vector store."
|
267 |
+
|
268 |
history_str = "\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in conversation_history])
|
269 |
+
|
270 |
if is_related_to_history(question, conversation_history):
|
271 |
context_str = "No additional context needed. Please refer to the conversation history."
|
272 |
else:
|
273 |
retriever = database.as_retriever()
|
274 |
relevant_docs = retriever.get_relevant_documents(question)
|
275 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
276 |
+
|
277 |
prompt_val = ChatPromptTemplate.from_template(prompt)
|
278 |
formatted_prompt = prompt_val.format(history=history_str, context=context_str, question=question)
|
279 |
+
|
280 |
answer = generate_chunked_response(model, formatted_prompt)
|
281 |
answer = re.split(r'Question:|Current Question:', answer)[-1].strip()
|
282 |
+
|
283 |
# Remove any remaining prompt instructions from the answer
|
284 |
answer_lines = answer.split('\n')
|
285 |
answer = '\n'.join(line for line in answer_lines if not line.startswith('If') and not line.startswith('Provide'))
|
286 |
+
|
287 |
if not web_search:
|
288 |
memory_database[question] = answer
|
289 |
+
|
290 |
if not web_search:
|
291 |
conversation_history = manage_conversation_history(question, answer, conversation_history)
|
292 |
+
|
293 |
return answer
|
294 |
|
295 |
def update_vectors(files, use_recursive_splitter):
|